
v AD-AI18 072 AIR FORCE INS T OF TECH WRIGHT-PATTERSON AFB OH SCHOO--ETC .F/S 14/3
AN INFLIGHT RECORDER PROTOTYPE FOR THE INFLIGHT PHYSIOLOGICAL D--ETC(U)

UkL FEB 82 R E MEISNER

N~CLASSIFIED AFIT /GC S/EE/82M-5 Nj2uuuumb
EhEEmhohmhhEEI
EEEEEEEEEEEEEE
EEEEmhohhhhhhE
EhhEEEEEEohEEI

\z

J"V

LDTIC
ELECTE

~AUG 1 11982
DEPARTMENT OF THE AIR FORCE W

AIR UNIVERSITY (ATC|).- '---

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

82 08 11 067

AFIT/GCS/ EEl 82M-5

AN INFLIGHT RECORDER PROTOTYPE
FOR THE

INFLIGHT PHYSIOLOGICAL DATA
ACQUISITION SYSTEM III

THESIS

AFITIGCS/EE/82M-5 Robert E. Meisner
Capt USAF

Approved for public release; distribution unlimited

AFIT/GCS/EE/82M-5

AN INFLIGHT RECORDER PROTOTYPE
FOR THE

INFLIGHT PHYSIOLOGICAL DATA
ACQUISITION SYSTEM III

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science Acoezio-,, ror

by -- 4

Robert E. Meisner t
Capt USAF Av fIP I

Graduate Computer Systems

February 1982
Apsc

copyr

Approved for public release; distribution unlimited

Preface

This thesis is another in the long line of efforts aimed

at building a better Inflight Recorder (IR) for the Inflight

Physiological Data Acquisition System (IFPDAS). Previous

theses analyzed different aspects of the IR problems and made

recommendations for construction of an IR prototype. Some

recommendations were followed, while others were updated to

take advantage of new advances in IC designs. The primary

product of this thesis is a hardware prototype for the IR.

With the hardware built, continuing theses can concentrate on

software development.

The people who helped bring the IR prototype to fruition

are too numerous to mention individually. They include

faculty, students, technicians and corporate representatives.

There are, however, a few people who deserve individual

recognition for the special attention they gave me. First of

all I must thank Capt Hall and Lt Shackford of the School of

Aerospce Medicine for insuring that the project was properly

financed. Thanks also to Mike West of the Air Force Avionics

Lab. His expertise and willingness to help were invaluable

(and I truly mean invaluable) in developing Magnetic Bubble

Memory hardware and software described in this thesis. I can

not forget Orville Wright. His timely procurement of hard to

find parts was instrumental to finishing this thesis. Thanks

to Major Alan Ross, Dr Mathew Kabrisky, and Captain Larry

ii

Kizer for their guidance throughout the thesis. I whole-

heartedly recommend them as advisors to future degree

candidates. Although not a member of my thesis committee, I

appreciate the time that Major Walt Seward took to advise and

critique my work.

Credit for the quality of this thesis must also go to

my poker/bowling budies. Their hard fought attempts to lead

me into financial ruin provided an important link with

reality. More seriously, I would like to acknowledge the

help and understanding given me by my loving wife, Celeste,

and daughter, Elizaberh. There is a direct correlation

between their support for my endeavors and my acedemic

accomplishments. I look forward to graduation so that we can

spend more time together.

,: iii I

Contents

Page

Preface.............................ii
I

List of Figures......................vi

List of Tables.......................vii

List of Abbreviations.....................viii

Abstract.............................xi

I . Introduction.......................1

Background.........................
Current System....................2
Previous Studies..................3

Problem Statement. 4
Scope and Assumptions...................5
Approach.........................6
Sequence of Presentation................6

II. Hardware Requirements Analysis..............8

Required Characteristics 8
Desirable Characteristics...............10
Preliminary Architecture...............12
IC Technology.....................14
Evaluation......................18

Main Processor..................18
Secondary Storage................25
Program Memory..................32
Data Acquisition Ports...............34
Buffer Memory...................34

Conclusions......................36

III. Prototype Construction................38

Operating Voltage 39
IC Technology Mix.....................39
Board Layout.......................41
Bus Structure.....................42
CPU..........................44

System Clock....................44
System Reset....................46
Wait State Generator...............47
Bus Demultiplexer.................49

Primary Memory....................51
Program Memory..................52
Buffer Memory...................54

iv

Peripheral Devices...................56
T imers......................58
General 1/0....................60
AID Converter...................61
MBM.......................63

Interrupt Structure..................65
Conclusion......................68

IV. Hardware Verification Program 69

Buffer Memory......................70
Timers................................71

Timer 1..........................71
Timer0......................72

General 1/0......................73
A/D Convertero......................74
BC..........................76
Conclusion........................77

V. Conclusions and Recommendations.............85

Conclusions......................86

Recommendations....................88

Bibliography..........................91

Appendix A: IR Prototype Schematic......... ... 93

Appendix B: EEPROM Programmer 99

Appendix C: HEM Interactive Development System155

Appendix D: IFIDAS IR Debugging Tool............236

Appendix E: Manufacturers' Data Sheets. 256

V ic a o 257

v

!w-

I
List of Figures

Figure Page

1. A Preliminary IR PMS 13

2. The Proposed New IR 36

3. Major Component Map of IR Prototype 41

4. CPU 45

5. Wait State Generator 48

6. EEPROM 50

7. Conventional HNVM3008 Interface 53

8. RAM 55

9. I/0 Ports, Timers, and A/D Converter 59

10. MBM 64

11. IR Prototype Verification Program 78

12. IR Prototype Schematic 94

13. EEPROM Programmer Schematic 106

14. EEPROM Programmer Flowchart 109

15. EEPROM Programmer Software 110

16. BPK-72 to S-100 Interface Schemat.c 160

17. MIDS Software 162

18. MBM Software 196

19. RDT I/0 Buffers 242

20. Data Bus Monitor 245

21. Address Bus Monitor 245

22. IR Reset Function 248

23. Single Step Function 250

24. Memory/Peripheral I/0 Circuit 252

25. RDT IC Functional Groupings 254

vi

III I I I i II

List of Tables

Table Page

I. Sensor Sampling Rates 11

II. Comparison of Logic Families 15

III. Comparison of Microprocessors 20

IV. Microprocessor Criteria Ratings 24

V. Comparison of Secondary Storage Devices 26

VI. IC Family Voltage Characteristics 40

VII. IR Bus Connector Definition 43

VIII. I/O Port Mapping 57

IX. IR Interrupt Structure 66

X. EEPROM Programmer Selectable Ports 102

XI. EEPROM Programmer IC Listing 104

XII. S-100 to EEPROM Programmer
Interface Definition o....... 105

XIII. Selectable MBM I/O Ports 158

XIV. BPK-72 to S-100 IC Listing 159

XV. BPK-72 to S-100 Interface Definition159

XVI. RDT IC Listing 255

vii

List of Abbreviations

AFIT US Air Force Institute of Technology,
Wright-Patterson AFB, OH

ALE Address Latch Enable Strobe (active high)

A/D Analog-to-Digital

A## Reference to Specific Bit (##) of the Address Bus

BACK* Bus Request Acknowledgment Signal (active low)

BMC Bubble Memory Controller

BREQ* Bus Request Signal (active low)

CCD Charge Coupled Device

CDOS Cromemco Disk Operating System

CLK System Clock

CMOS Complementary Metal-Oxide Semiconductor

CPM Control Program for Microprocessors

CPU Central Processing Unit

CS* Chip Select (active low)

D# Reference to Specific Bit (#) of the Data Bus

ECG Electrocard iogram

EEPROM Electrically-Erasable Programmable Read Only Memory

EPROM Erasable Programmable Read Only Memory

FIFO First-In / First-Out

FF Flip-Flop

GND Electrical Ground

Gx Lateral Acceleration

Gy Vertical Acceleration

Gz Longitudinal Acceleration

viii

HMOS High-performance Metal-Oxide Semiconductor

IFPDAS Inflight Physiological Data Acquisition System

IC Integrated Circuit

INTA* Interrupt Acknowledge (active low)

INTR* Maskable Interrupt (active low)

IO/M* Type of Machine Reference; high signal implies
access to input/output device, low implies memory
access.

IR Inflight Recorder

I/0 Inpuc / Output

KIPS Thousands of Instructions Per Second

LSTTL Low-power Shottky Transistor-Transistor Logic

LTTL Low-power Transistor-Transistor Logic

MBM Magnetic Bubble Memory

MIDS Magnetic Bubble Memory Interactive Development
System

NMI* Non-Maskable Interrupt (active low)

PMS Proc essor-Memory-Switch

PROM Programmable Read Only Memory

P2CMOS Poly-Planar Complementary Metal-Oxide Semiconductor

RAM Random Access Memory

RDT Inflight Recorder Debugging Tool

RD* Read Strobe (active low)

RFSH* Dynamic Memory Refresh Signal (active low)

ROM Read Only Memory

RSTx* Maskable Interrupts, x - A, B, or C (active low)

so, Sl Microprocessor Machine Cycle Status

SAM US Air Force School of Aerospace Medicine,
Brooks AFB, TX

ix

TTL Transistor-Transistor Logic

WR* Write Strobe (active low)

XWAIT* Processor Wait Request Signal (active low)

x

Abstract

A prototype for the Inflight Recorder component of the

Inflight Physiological Data Acquisition System was built.

The Inflight Recorder is a remote data acquisition computer

for sampling physiological data. Characteristics of the

recorder's design were solid-state, microprocessor

controlled, expandability, 16 sensor inputs, and 122 samples

per second. Demonstration of battery operation for four

hours and unobstructive size characteristics awaits further

testing.

Following a hardware requirements analysis, the

prototype was built using Complementary Metal Oxide

Semiconductor (CMOS) integrated circuits. Components

featured in the design were a CMOS microprocessor;

Electrically Erasable Programmable Read Only Memories

(EEPROM); a monolithic, 16 channel, analog to digital

converter; and Magnetic Bubble Memories (MBM).

In addition to building the IR prototype, several

development tools were constructed. One was a EEPROM

Programmer. Another was an MBM Interactive Development

System. A third was a hardware front panel for debugging IR

software. User's manuals for these tools appear in

appendices to the thesis.

xi

An Inflight Recorder Prototype for the
Inflight Physiological Da'- Acquisition System III

I Introduction

One of the missions of the United States Air Force

School of Aerospace Medicine (SAM) is to develop effective

life support systems for the crews of high performance

aircraft. To accomplish this task, SAM collects

environmental and physiological data during actual sorties.

Upon mission completion, this data is added to a historical

data base and correlated with data from past missions. This

data collection and analysis system is known as the Inflight

Physiological Data Acquisition System (IFPDAS). Since the

IFPDAS is the primary method for collecting inflight

environmental and physiological data, it is an important tool

for evaluating the effectiveness of Air Force life support

systems.

Background

The IFPDAS is composed of three subsystems. These are

the Inflight Recorder (IR), the field processing facility,

and the laboratory processing facility. The IR is the data

collection component of the IFPDAS, while the other two

subsystems function as data analyzers (Ref 8). The current

IFPDAS is of limited usefulness because of present IR

1

0'I

weaknesses. These weaknesses and the development of a

prototype to overcome them, motivates this thesis research.

Current System. From its inception, the IFPDAS has been

plagued by an inadequate IR. This was true for the IFPDAS I

and is still true for the current model, IFPDAS II. The

inadequacy of the IR results from its hardware configuration

as a cassette tape recorder interfaced to a signal sampling

device. This configuration caused several problems, which

were revealed in the IFPDAS I (Ref 16:1-2). Five of the

problems were:

1. The cassette drive mechanism stopped during high-G
maneuverq, causing discontinuities in data
recording.

2. The IR was capable of recording only the follLwing
seven signals:

a. a time code for correlating samples,
b. pilot voice,
c. Electrocardiogram (ECG),
d. cabin pressure,
e. oxygen consumption,
f. expired flow, and
g. vertical acceleration.

Additions and changes to these seven inputs were
impossible without a hardware redesign.

3. All data manipulation was done with analog signals.
This degraded the samples as noise was introduced
during each stage of data manipulation.

4. The IR was constructed with discrete components,
making it less reliable than a system based on
integrated circuits (IC's).

5. Additionally, discrete components added to system

bulk, undesirably restricting pilot movement.

In an effort to correct some of the problems outLined

above, The Pacific Missile Test Center, Microelectronics

Branch, at Point Mugu Naval Air Station, California,

2

redesigned the IR. The result, currently being used in the

IFPDAS II, is a more capable and reliable IR. Increased

capabilities are a result of the addition of environmental

and body temperature sensors. However, it should be noted

that some design tradeoffs were made to accomodate the

additional sensors. The result is that either body

temperature and ECG, or environmental parameters can be

recorded, exclusive of each other (Ref 8). Reliability is

increased in two ways, one being through the increased use of

IC's. Another is the result of digitizing some of the

recorded data. The sensors that are recorded digitally are

the body temperature and ECG. While this new IR is an

improvement over the old, all of the five problems listed

above still exist.

Previous Studies. Previous studies have shown that a

solid-state IR is feasible, using commercially available

hardware. The progression from the initial feasiblity

question through the most recent thesis effort is outlined in

the following chronology of US Air Force Institute of

Technology AFIT) studies.

1. Jolda and Wanzek (DEC 77) - showed a solid-state
IR is feasible using Magnetic Bubble Memory
(MBM) ;

2. Hill (DEC 78) - investigated storage requirements
and techniques for sampling 12 physiological
sensors;

3. Moore (JUN 80) - simulated IR operation on a

Rockwell 6500 microcomputer with MBM, while
analyzing storage requirements; and

3

4. Svetz (DEC 80)- considered a hardware design for
the IR and wrote software for a ground based
system to analyze IFPDAS data.

While a one sentence synopsis of each of the above theses is

terse, it describes the most important aspect that each

contributes to the ongoing search for an improved IR. Based

on recommendations made by these studies, the next logical

step is to construct a prototype of a new IR.

Problem Statement

This thesis is aimed at replacing the weak link in the

IFPDAS by building an IR prototype. Unlike previous models,

the new IR will be a solid-state, microprocessor-controlled

device. This new design offers the followixg solutions to

the problems listed in the Current System description.

i. Moving parts, which stop during high-G maneuvers,
will be replaced by solid-state components.

2. Sampling limitations will be alleviated by two
means. One will be that any O-5V sensor can be
plugged into any of the sensor ports. Another will
be use of a microprocessor to control sampling
methods through characteristically flexible
software.

3. All data will be stored and manipulated in its
digital form. Therefore, the only error in the
sample data will be a consequence of the analog-to-
digital (A/D) conversion. Once in digital form,
data manipulation will be free from error
introduced by analog noise.

4. System reliability will increaoe because IC's will
be used where possible. Use of discrete components
will be minimized.

5. While the IR prototype will not directly solve the
bulk problem, it will provide a model for
estimating the size of a new IR. Though the
new IR will be physically larger, its basic
structure as a microprocessor with peripheral I/0
ports (input - signal sensors; output - secondary

4

storage) allows the system to be broken down into
several smaller devices and distributed to
convenient body locations. If distribution is
judicious, pilot movement will be less restricted
with the new IR.

Scope and Assumptions

For this project, a prototype was considered to be a box

capable of overcoming the first four problems mentioned

above, as well as providing a model for estimating system

bulk. To realize a working prototype, IR hardware was

designed and built using commercially available IC's. In

addition, software was written to show that IR components

were functional.

Because of the limited time for completing this thesis,

custom design of the physiological sensors was not done.

Instead, the IR was designed to interface directly to any

sensor having a full scale output range of 0-5V. This 0-5V

assumption was natural since all IR sensors in the IFPDAS II

meet this criterion (Ref 8). In addition, the new IR

benefited from this assumption because its design was not

restricted by a closed set of sensors. Therefore, the new IR

can be tailored for a specific application simply by changing

the sensors and writing appropriate software drivers.

A second assumption involving the sensors dealt with

data accuracy. The assumption was that eight bits of digital

data could accurately represent the sampled analog inputs.

IR sensor sampling and ground based signal reconstruction

were investigated by Jolda and Wanzek. Based on their

observations an eight bit word, capable of recording units

5

from 0 to 255, was sufficient for IFPDAS use (Ref 16:27-41).

Further analysis of sample accuracy was not done in this

thes is.

It must also be noted that IR construction was not

restricted by requirements to interface the new IR to current

IFPDAS analysis hardware. This flexibility allowed for an

optimum hardware design based only on the requirements

outlined in Chapter II. This thesis assumed that appropriate

data processing equipment would be procured should current

equipment prove inadequate for supporting the new IR.

Approach

Building the IR prototype involved constructing hardware

and writing software. Before either hardware or software

work began, requirements were identified, an architecture was

developed, and IC's were chosen for the new IR. This process

matched a set of commercially available IC's to the major

components of the IR. Once devices were identified, hardware

design and construction began. As construction proceeded,

software was developed to show that each new system component

was properly interfaced.

Sequence of Presentation

Chapter II is a hardware requirements analysis whose

purpose it is to define a set of IC's for building the new

IR. Using the chips defined in Chapter II, Chapter III

describes the circuit design for constructing the new IR

prototype. Then Chapter IV outlines a program that

6

demonstrates the operation of IR components. Finally,

Chapter V lists conclusions and makes recommendations for a

flyable IR. In addition, IR protoype support tools developed

during the project are described in the appendices.

7

II Hardware Requirements Analysis

The purpose of this functional analysis is to define a

microprocessor architecture that will satisfy the

requirements for a new generation IR. This analysis begins

by deriving a list of required and desired characteristics to

guide construction of the IR prototype. Then, a preliminary

hardware architecture for performing physiological data

acquisition is described. Finally, commercially available

IC's are mapped onto the preliminary architecture, defining

the set of solid-state components used in the new IR.

Required Characteristics

The characteristics required for the new IR were derived

from a set of requirements identified by Capt Hall and Lt

Shackford of SAM (Ref 8). Generally, requirements were

derived to solve the problems inherent in the IFPDAS II (see

Current System, Chapter I). In addition, prior theses showed

that it was feasible to construct a system w ith

characteristics based on the following requirements.

The first requirement is that the IR resist mechanical

failures. This requiremen' is a consequence of the fact that

the tape recorder portion of the current IR fails during

high-G aircraft maneuvers. This failure results from the

tape transport's mechanical nature. As forces on the

recorder become excessive, the tape transport stops. A

8

solution to this problem is to replace the mechanical

components with solid-state components.

The second requirement is that the IR be totally man

portable. To preclude interference with emergency pilot

egress, there can be no physical connections between the IR

and the cockpit environment. This interconnecting

restriction forces a remote operating capability on the IR.

Consequently, the IR must carry its own power supply,

resulting in a required characteristic for battery operation.

The third requirement is that the IR be unrestrictive.

That is, it must be small enough to be attached to crew

members without restricting movement. This requirement

results from comments made by pilots who have worn the IR of

the IFPDAS I. Their comments indicate that since the IR is

located on their chests, its two inch thickness hindered

movement. A concensus on the bulkiness of the IR of the

IFPDAS II, which is only an inch and a half thick, is not

available at the time of this writing. Regardless, the new

IR must not obstruct pilot movements.

When considered together, the previous two requirements

imply that the IR should be as small as possible. That is,

given that it must be totally man portable, a small IR is

less restrictive than a large IR. Requirements do not give a

set of me-surements to bound the IR; instead, the requirement

for an unrestrictive property is specified. So, while small

size is a by-product of portable and unrestrictive, it will

not be categorized as a required characteristic.

9

The final requirement is that the IR be flexible. This

is motivated by the fact that SAM wishes to record data other

than the limited set available from the current IR.

According to Capt. Hall, changing current sensor inputs and

sampling rates is tedious to the point that variations are

not made (Ref 8). A more flexible IR must possess two

characteristics. One is that it be microprocessor

controlled, so that sampling order and rate are easily

changed by software reprogramming. Another is that sensor

interfacing be simple and direct. For the purposes of this

thesis, sensor interfacing is simplified based on the Scope

and Assumptions discussion of Chapter I.

In summary, because of the requirements that the new IR

be failure resistant, man portable, unrestrictive , and

flexible; the IR must possess the following characteristics:

1. solid-state,

2. battery operated,
3. unobstructive, and
4. microprocessor controlled.

Desirable Characteristics

In addition to the required characteristics outlined

above, SAM listed several other features that should be

incorporated into the IR prototype. These desired

characteristics differ from those that are required, in that

they are only goals for guiding the prototype design.

Failure to meet all desired characteristics is not critical

to construction of the new IR.

10

TABLE I

Sensor Sampling Rates
(Refs 11:9-13; 21:15)

Sampling Rate

Sensor (samples per second)
sensor cluster

Triaxial Acceleration 8 24

Cabin Pressure 2 2

Inspired Flow Rate 20 20

Expired Flow Rate 20 20

Inspired Oxygen Concentration 20 20

Expired Oxygen Concentration 20 20

Body Temperature 2 16

Total 122

Most of the desired characteristics involve sensor

inputs. First, the IR prototype should be capable of 16

sensor inputs. In addition, the initial set of sensors

should be: 1. triaxial acceleration (Gx, Gy, Gz),
2. cabin pressure,
3. inspired flow rate,

4. expired flow rate,
5. inspired oxygen concentration,
6. expired oxygen concentration, and
7. body temperature (at eight points).

(Ref 8)

These sixteen sensors dictate a rate of 122 samples per

second. Individual rates are broken out in Table I, based on

derivations done in the Hill and Moore theses. Noting that

future applications call for the use of various other

11

sensors, another desirable characteristic is that IR

components be able to support expanding capabilities. The

sensors being considered include additional environmental and

several electrocardiogram sensors. Yet another desirable

characteristic is for an operating duration of four hours,

that being the length of a useful data acquistion mission

(Ref 8). In summary, there are four desirable

characteristics for the IR prototpe:

1. 16 sensors,
2. room-for-expansion,
3. 122 samples per second, and

4. four hour operation.

Preliminary Architecture

Hardware architectures illustrated in this thesis rely

on the Processor-Memory-Switch (PMS) technique developed by

Gordon Bell and Allen Newell. They developed the PMS

technique as a "compact and useful" method for describing

digital computers. Basically, PMS diagrams show gross

hardware structure by illustrating the capacity of system

components, information paths between components, and

distribution of control between components. The level of

detail at which these PMS attributes are defined depends on

particular applications. A more in depth description of the

PMS technique is found in Bell and Newell's book - Computer

Structures: Readings and Examples (Ref 1:15-36,615-27).

Component designations used in PMS diagrams within this

thesis come from standard abbreviations applied by Bell and

12

Pc Mp(ROM)

Mp (RAM)

-Ms

T(A/D Converter #1)- T(Sensor #1)

(A/D Converter #16)--T(Sensor #16)

SI
T(Parallel Output)

Figure 1. A Preliminary IR PMS.

Newell. They are: Pc - Central processor, Mp - primary

memory, Ms - secondary memory, K - controller, T -

transducer, and S - switch.

Figure 1 is a PMS diagram showing a general overview of

the hardware configuration to be employed in the new IR. The

remainder of this requirements analysis is directed at

mapping available IC's onto the portions of this

configuration that fall within the outlined box. The

13

remainder of this chapter analyzes the:

1. main processor - Pc,
2. secondary storage - Ms,
3. program memory - Mp(ROM),
4. data acquisition ports - T(A/D Converter), and
5. buffer storage - Mp(RAM).

Other portions of the diagram are not examined in the

following analysis, but can easily be built using

commercially available components.

IC Technology

Before proceeding with analysis of individual

components, an IC technology family must be chosen to

implement the design. A proper technology is critical in

light of the unobstructive and battery operated

characteristics required for the new IR. Since batteries

are bulky, space requirements are best minimized by reducing

system power requirements. Therefore, the primary criterion

for chosing a technology must be to minimize power

consumption.

Currently, Complementary Metal-Oxide Semiconductor

(CMOS) devices draw far less power than other technologies.

Table II illustrates this fact by comparing the power

dissipated by Transistor-Transistor Logic (TTL), Low-power

Shottky TTL (LSTTL), Low-power TTL (LTTL), and CMOS

technologies. The reason CMOS consumes such low power is

that only a low level leakage current flows through CMOS

gates when they are in a steady state. Larger currents are

drawn only while gates are switching from one state to

14

TABLE II

Comparison of Logic Families (*)
(Refs 3:1-3,1-5; 28:6-3 - 6-5)

TTL LSTTL LTTL CMOS

Typical Power
Dissipation 10 mW 2 mW 1 mW .01 mW (static)

(per gate) 1 mW (1Mhz)

Propagation
Delay 9 ns 10 us 33 ns 50 ns (5V)

30 ns (OY)

Input Voltages
Low Level .8 V .8 V .7 V 1.5 V (5V)

(max) 2.0 V (10V)

High Level 2 V 2 V 2 V 3.5 V (5V)
(min) 8.0 V (10V)

Output Voltages
Low Level .4 V .5 V .4 V .5 V (5V)

(max) 1.0 V (1OV)
High Level 2.4 V 2.7 V 2.4 V 4.5 V (5V)

(min) 9.0 V (10V)

Noise Margin .4 V .3 V .3 V 1.0 V (5V)
(guaranteed) 1.0 V (10V)

---- ---
(*) NAND gates used as standard for comparison.

another. Consequently, as the frequency of gate switching

increases so does power consumption. In practice, however,

only a few gates switch at any one time, leaving most gates

in a static state. Therefore, at any one time, most gates

draw only leakage current resulting in low overall power

consumption (Ref 18:585).

Besides its low power characteristic, CMOS displays

several other advantages that make it a preferred candidate

for the IR. One is that CMOS generates very little heat as a

15

consequence of its low power operation. This characteristic

allows the IR to operate within the life vest of a pilot

without bulky ventilation devices.

Another advantage of CMOS over other technologies is its

relative immunity to noise. This immunity is known as the

noise margin and is defined as the difference between the

guaranteed voltage limits of a driving gate and voltage

requirements of a driven gate for a particular logic state

(Ref 27:40). Applying this definition to the figures of

Table II, CMOS tolerates 2.5 times the noise that TTL does.

The figures of Table II are guaranteed by the manufacturer to

be absolutely safe operating tolerances. But in practice,

both TTL and CMOS exhibit higher tolerances. Typically, TTL

tolerates 1.5 volts in its logic 1 state, and 1.15 volts in

its 0 state (Ref 27:41). Because CMOS changes states at

close to half of its supply voltage, it typically tolerates

noise at levels up to 45 percent of the supply voltage (Refs

3:6-60; 29:94). With a five volt supply this equates to a

2.25 volt tolerance. So, because CMOS has a higher noise

margin than other technologies, the power supply of the IR

ca, be simplified without affecting system operation.

So far, discussion has centered on a +5V power supply

for operating the different technologies. As Table II

indicates, CMOS can also be biased at higher voltages.

Advantages gained by operating CMOS at a higher voltage are

reduced propagation delay and increased noise margin. The

16

magnitude of these advantages is shown in Table II for CMOS

gates operated at +1OV.

In addition to the advantages offered by CMOS, there is

one important disadvantage that must be considered. The

disadvantage, as illustrated in Table II, is that current

CMOS devices are slower than devices of other technologies.

These slower speeds result more from monetary considerations

than from theoretical limits. But, as CMOS manufacturing

costs decrease relative to more popular technologies, more

CMOS devices with improved performance will become

commercially available (Refs 6:24; 26:90,94). One recent

example of an improved performance CMOS technology is

National Semiconductor's poly-planar CMOS (P2CMOS) process

(Ref 24:3-1). A NAND gate fabricated with P2CMOS techniques

has a propagation delay of only 18 nanoseconds when operated

from a five volt supply (Ref 24:A-55). But, even though CMOS

technologies are capable of better speed performance, most

CMOS chips available today are comparatively slow.

Consideration of CMOS device speeds is important to the

IR for two reasons. One is that the main processor of the IR

must be fast eL;cugh to sample and store data at an acceptable

rate. Analysis, completed later in this chapter (see Main

Processor subsection), shows that such a processor does

exist. Another reason involves the circuits which connect

the components within the processor. These "glue" circuits

must keep up with the processor so that control signals are

not lost. Since a wide variety of fast CMOS devices do not

17

exist, interconnecting IC's hold potential problems for the

IR design. Fortunately, these problems can be reduced by

using either of the more popular LTTL or LSTTL technologies.

Which technology to use depends on speed requirements, with

LTTL being preferred because of its lower power consumption.

Evaluation

The following analysis yields a set of IC's ror use as

the major circuit components in the new IR. Though

components have been analyzed in prior theses, there are two

reasons why they must be reevaluated. Most importantly, many

new chips have been marketed in the past year. Several of

them are directly applicable to the IR. Another reason for

reevaluation is that previous analyses were biased by

availability of and familiarity with the development tools

located in the AFIT Digital Engineering Lab. These biases

forced unnecessary restrictions on previous analyses. The

only restrictions placed on the following analysis are the

required and desired characteristics outlined above. This

new evaluation yields a chip set which is better suited for

the new IR than those suggested in prior theses.

Main Processor. The central component of the new IR is

a CMOS general-purpose microprocessor. The following

discussion analyzes three microprocessors : the National

Semiconductor NSC800, the Motorola MC146805E2, and the RCA

CDP1802. They were chosen because they are the only 8-bit

CMOS general-purpose microprocessors on the market today

(Refs 20:150-4,162-5; 13:501-45). Each is a solid-state, 40

18

pin IC, capable of battery operation. These features satisfy

all required characteristics, qualifying them for use in the

new IR.

Before analyzing desirable characterisics, it should be

noted that benchmarking would have been a useful tool for

comparing the microprocessors. Programming identical IR

data manipulation algorithms, would have provided valuable

information for choosing the best applicable microprocessor.

However, with the time allotted to order hardware and

complete this thesis, such a comparison was not feasible.

Still, one microprocessor was judged best for IR

applications.

Continuing the evaluation, only two of the desirable

characteristics, 122 samples per second and room-for-

expansion, apply to the microprocessors. Considering the

desire to process 122 samples per second, Table III indicates

that even the slowest processor can execute 1279 instructions

per sample. While no minimum number of instructions per

sample has been projected, 1279 certainly allows for reading

and storing a byte of data with some level of processing in

between. It follows that, if the slowest processor is

capable of processing 122 samples per second, then all of the

processors in Table III are acceptable.

Expansion capabilities of the new IR depend upon both

instruction cycle time and available address space. Possible

areas of expansion include sampling at higher data rates and

increasing the complexity of preprocessing algorithms. Both

19

TABLE III

Comparison of Microprocessors
(Refs 22:2,3,22-23;

24:4-2,4-7 - 4-9;
26:17,19,24,31)

NSC800 MC6805 RCA1802

Operating Frequency
(max at 5V) 5M 5M 2.5M

Clock Cycles per
Machine Cycle 2 5 8

Machine Cycle Frequency
(max at 5V) 2.5M IM .31M

Cycles per Instr
(fastest instr) 4 2 2

Instr Cycle Frequency

(KIPS) 625 500 156

Instr per 1/122 sec 5120 4100 1279

Address Range 64K 8K 64K

areas are limited by the speed of the host microprocessor.

In addition, increased algorithm complexity generally implies

the need for additional program storage. Comparing the

processor speed and address space characteristics outlined in

Table III, the NSC800 is the best performer. The MC6805 is

chosen as the second best since its execution speed is faster

than the RCA1802 and its address space can be expanded to

equal that of the RCAI802 through memory banking.

Memory banking techniques allow software to activate

blocks of memory one at a time. The largest block size

20

available to the MC6805 is 8K bytes. Implementing eight 8K

banks, the MC6805 has access to 64K bytes of memory, equaling

that ot the RCA1802. A summary of expansion capability

rankings is provided later in Table IV.

Prior to examining the room-for-expansion criterion, all

three microprocessors were judged capable of supporting IR

requirements. To this point there has been no compelling

reason to choose one microprocessor over the others.

Therefore, an additional set of criteria is introduced to aid

in Lhe selection process.

The following paragraphs introduce three additional

criteria for selecting a microprocessor. First, the data

manipulation capabilities of each microprocessor are

compared. Next, processor support, including documentation

and variety of support chips, is evaluated. Then,

the popularity of the microprocessors is discussed relative

to software maintenance problems.

Besides sampling and preprocessing physiological data, a

primary function of the IR is to block and save the data in

secondary storage. While each of the microprocessors has

adequate single byte I/0 and arithmetic instructions, only

the NSC800 has block manipulating instructions. The

advantage of block moves is that a single instruction causes

transfer of an entire data block. In addition, a single

tiansfer instruction executes somewhat faster than a loop

when moving the same amount of data. Consider, for example,

21

the following loop for outputting a block of data:

LOOP: LD A,(HL) 7 **
OUT (PORT),A Ii ** Instruction Time
INC HL 6 ** In Machine Cycles
DJNZ LOOP 13 **

37 - Total Machine Cycles

Using the block output instruction, OTIR, the above loop can

be executed in one instruction, requiring only 21 machine

cycles per byte. Other block manipulating instructions have

similar advantages. (Ref 24:5-5 - 5-32)

The I/0 subset of the block move instructions have

immediate applications in the IR. Since the primary function

of the IR is real time data acquisition, the less time spent

saving data, the more time is available for processing

samples. Consequently, the block move instructions of the

NSC800 make it the most capable data handler for IR

applications.

Another important factor, especially during system

design, is manufacturer support. This support is critical in

two areas, processor documentation and variety of support

chips. All three manufacturers have good descriptions of

their microprocessors in both manuals and data sheets (Refs

22; 24; 26). However, each manufacturer's family of support

chips varies. RCA offers the widest variety, due probably to

the fact that their microprocessor has been commercially

available considerably longer than the others. The second

best variety comes from National Semiconductor, who has

adequate variety for simple applications, including remote

data acquisition (Refs 24:8-13, 8-15 - 8-17).

22

One way to reduce software maintenance problems is to

choose a popular microprocessor. This is true for two

reasons. One is that popular processors have a wider variety

of software development tools. This wider variety increases

the probability that one will be acceptable for IR

applications. Another reason is that increased popularity

implies that more people are qualified to program the

microprocessor. Consequently, the search for, or the

training of, programmers is simplified.

An indicator of microprocessor popularity is the number

of commercially available microcomputers which employ them.

Electronic Design publishes an annual guide for single board

microcomputer comparisons. Counting the numbers of CPU

boards based on the three processors in this analysis, the

MC6805 did not appear, the NSC800 was the basis for one

board, and the RCA1802 was the basis for three. However,

since microprocessor popularity is being judged as it relates

to software, and since the NSC800 executes the Z80

instruction set (Ref 24:A-3), all references to the Z80 can

be applied to the NSC800 count. The Z80 is used in 36

products (Ref 19:88-95).

Before saying that the NSC800 has the most popular

software instruction set and the MC6805 has the least

popular, one other factor must be considered. Many

microprocessors have instruction sets that are extensions of

ancestors within the microprocessor family tree. Therefore,

upgrading to a related processor is a simple task when

23

TABLE IV

Microprocessor Criteria Ratings (*)

Criteria NSC800 MC6805 RCA1802

Required/Des ired
Characteristics 1 1 1

Expansion Capability 1 2 3

Data Manipualtion 1 2 2

Support Chips 2 3 1

Popularity 1 2 3

(*) Acceptable = 3, Better = 2, Best = 1

compared to learning a new language. Ancestors of the

NSC800/Z80 include the 8080 and the 8085. Those for the

MC6805 are the 6800 series processors and the 6502. The

RCA1802 has no popular ancestor (Refs 5:44-52; 30:175-84).

Referring to ancestors in the microcomputer guide, the NSC800

has the most popular software structure, followed by the

MC6805, with the RCAI802 being a distant third (Ref 19:88-

95).
Table IV summarizes the microprocessor comparisons made

in the previous discussion. For each criterion the

processors are ranked, with 1 being the best rating. The I

rankings for the required/desired characteristics indicate

only that all microprocessors fulfilled the criteria.

Expansion capability is ranked separately because it was the

only desired criterion where one processor was judged more

24

capable than the others. The remaining criteria in the table

are those added to the selection process.

In conclusion, the NSC800 is chosen as the main

processor for the new IR. Referring to Table IV, the NSC800

has the best performance characteristics for all but one of

the evaluation criteria. Neither of the other two processors

performs as well as the NSC800, based on the criteria

developed above.

Secondary Storage. The need for a large secondary

memory, on the order of one megabyte, was projected by the

Hill and Moore theses. A one megabyte memory is the single

largest component in the IR. Therefore, it is potentially

the biggest power user and space consumer in the system.

Three possible solid-state memories that are available

for mass storage are MBM, RAM, and Charge Coupled Devices

(CCD). The densest possible examples of each are compared in

the following analysis. According to the 1981 IC Master

catalog, the densest commercially available devices are the

Intel 7110 MBM, the Fairchild F264 CCD, and the Harris HM6564

Static RAM.

Table V shows some charactistics of the three devices

that are targetted for use as secondary storage. The number

of chips indicates only what is required to store one

megabyte of data. The number does not include chips required

for processor interfacing. Since both the CCD's and RAM's

are 64 kilobit devices, they require 128 chips to store one

megabyte (Refs 7:1; 10:3-94). The bubble memory and its five

25

TABLE V

Comparison of Secondary Storage Devices

MBM CCD RAM

Chips 48 128 128

Area (sq in) 48 46 26-

Device Active

Time (percent) .13 .06 .06

Power
Standby 8.36W 8.32W .03W
Operating 11.27W 8.35W .06W

Non-volatile yes no no

support IC's can store one megabit. To store one megabyte,

an MBM device requires 6 * 8 - 48 chips (Ref 2:1-1).

The area consumed by each one megabyte store is

estimated by adding the areas taken up by each chip.

Included in the estimate is two-tenths of an inch space

between each chip. To simplify calculations, this space is

divided among he IC's by including a one-tenth of an inch

border around each chip. The following calculations derive

the area values of Table V:

CCD chip size - .3 x .8
Single chip area

with .1 border - .4 1 .9 - .36
Total area required - .36 * 128 - 46.08 (Ref 7:8)

RAM chip size - .9 x 2.0
Single chip area

with .1 border - 1.0 * 2.1 - 2.1
Total area required - 2.1 * 128 - 268.8 (Ref 10:8-9)

26

MBM chip sizes - 725X - .3 x .7
7242 - .3 x 1.0
7230 - .6 x 1.2
7110 - 1.7 x 2.0

Single chip areas
with .1 border - .4 * .8 = .32

.4 * I.I = .44

.7 * 1.3 - .91
1.8 * 2.1 - 3.78

Total area required -

8 * ((3 * .32) + .44 + .91 + 3.78) = 48.3
(Ref 2:2-4; 17:11).

All three devices chosen for secondary memory have

standby power ratings. Standby power indicates the amount of

power drawn by an IC which is not actively operating.

Typically this power is less than that dissipated when the

chip is being accessed. So, the amount of time that an IC is

operating has a direct affect on the total power dissipated

by that IC.

The device active time within Table V indicates the

percentage of time that a memory device will be operating

during a data acquisition mission. Three assumptions were

made to obtain these percentages. First, the need to store

data at a four kilobytes per minute rate was established.

This rate uses 960K bytes, or 94 percent of the one megabyte

total, during a four hour mission. A second assumption was

that only one unit within a secondary device operates at one

time. That is, at any time only one IC will be operating

within the RAM and CCD devices, and only one module (six

IC's) will operate in the MBM device. The last assumption

was that secondary memory operates at its maximum rated

speed, consistent with low power consumption. Note, however,

27

that this maximum speed must be tempered by the speed of the

main processor.

A useable upper limit on secondary memory speed is the

maximum output transfer rate of the main processor. The

fastest way to output a data block through the NSC800 is with

the OTIR instruction. With a 2.5 MHz clock frequency, the

OTIR instruction takes 8.4 microseconds to transfer one byte

(Ref 24:5-27). This speed translates to a maximum output

transfer rr..e of 120,000, or approximately 117K bytes per

second.

Two of the three secondary storage devices operate

faster than 120 KHz. The fastest device is RAM, which can be

interfaced directly to the main processor without wait states

(Refs 10:3-100; 24:4-16). The second fastest device is CCD.

It consumes minimum power when operated at its minimum

frequency of one megahertz (Ref 7:6). Noting that CCD's are

serial devices, an operating frequency of one megahertz

translates to a transfer rate of 1,000,000 / 8 = 125,000, or

approximately 122K, bytes per second. With a speed matching

buffer between the NSC800 and CCD, the CCD peripheral

operates at the 120 KHz maximum of the NSC800. The NSC800

does not affect the MBM transfer speed. The BPK-72 Bubble

Memory Prototype Kit User's Manual sets the maximum MBM rate

at 50K bytes per second in its minimum power consuming

configuration (Ref 2:2-7). In summary, the data transfer

rates used for Table V calculations are: RAM - 117K, CCD -

117K, and MBM - 50K bytes per second.

28

Calculations for device active times are based on the

transfer rates listed above. The method for determining

active time percentages is to divide the 4K bytes per minute

storage requirement by the transfer rate of each device. In

general, device active time = 4 / (rate * 60) * 100, when

expressed as a percentage. Substituting the storage rate

defined in the preceeding paragraph yields the values in

Table V.

The next to the last set of entries in Table V are power

ratings. They were obtained by adding up the power consumed

by each IC within a storage device. Individual power ratings

were taken from "typical" values reported by the maufacturer.

Differences in reporting IC characteristics led to the

employment of three different methods for determining the

power ratings. Intel explicitly listed typical power

consumption figures for each device in the MBM module.

Fairchild provided a graph showing typical power dependence

on the operating clock pulse width. Finally, Harris listed

typical current and voltage characteristics to which the

power formula, voltage times current, was applied.

The standby power values of Table V are calculated with

all IC's in an inactive state. Calculations yield

RAM - 128 * .25mW - 32mW = .032W (Ref 10:3-97),

CCD - 128 * 65mW - 8.32W (Ref 7:6), and

MBM - 8 * .29W = 2.32W

+ 8 * .225W = 1.80W
+ 8 * .5W = 4.00W

+ 8 * .03W - .24W
+ 16 * 0.0W - 0.00W

= 8.36W (Ref 2:2-8).

29

Operating power values depend on the conditions set

above for transfer rates and numbers of parallel operating

IC's. For RAM storage only one IC operates. Since RAM

operates at the 120 KHz transfer rate of the NSC800, the

HM6564 has a typical current drain of 120KHz * (40mA / IMHz),

or 4.8mA. At five volts, 4.8mA translates to a power draw of

24 mW, so,

RAM = (127 * .25mW) + 24mW - .056W (Ref 10:3-97).

Operating at one megahertz an F265 draws 90mW, leading to

CCD = (127 * 65mW) + 90mW = 8.345W (Ref 7:6).

Finally, multiplexing MBM modules one at a time results in

six active IC's, and a power draw of

MBM (7 * .29W) + 1.48W = 3.51W
+ (7 * .225W) + .225W = 1.97W
+ (7 * .5W) + .5 = 4.00W
+ (7 * .03W) + .48 = .69W
+ (14 * OW) + (2 * .55W) = 1.10W

11 .27W
(Ref 2:2-8).

At this point an observation relative to power ratings

is useful. The observation is that secondary storage is not

used frequently enough for the active power ratings to be a

useful comparison parameter. The largest and longest

operating power consumer, MBM, illustrates this point. The

MBM operates at 8.36W, 99.87 percent of the time, and at

11.27W the rest of the time. So, overall, the MBM dissipates

(99.87 * 8.36W) + (0.13 * 11.27W) = 8.364W.

This calculation shows that active power contributes on the

order of only a few milli-watts to overall power consumption.

Likewise, the other active power ratings of Table V do not

30

significantly affect overall power consumption.

Consequently, the active power values of Table V are ignored

in the following analysis.

CCD, MBM, and RAM were chosen for analysis as secondary

storage devices because they satisfied both solid-state and

microprocessor controlled requirements. In addition, all

three can be operated on batteries. The lithium battery pack

proposed by Hill (Ref 11:84) is capable of powering both the

MBM and RAM devices. With a slight modification to include a

-5V supply the Hill pack could also power the CCD's.

Comparing the three storage devices relative to the

unobstructive requirement, forces RAM's to be dropped from

further consideration. As seen in Table V, RAM's consume 5.6

times the area of either MBM's or CCD's. Allowing for

reduced power requirements and using Hill's proposed power

pack, the area factor is still RAM = 4.4 * MBM. This is

deduced from the extreme assumption that the 3 x 2 x 5 inch

power pack can be eliminated to allow space for four 3 x 5

inch RAM boards. Since a RAM storage device would increase

the size of the IR much more than the other devices, it will

not be used as secondary IR memory.

The only significant difference between the MBM and CCD

devices as they relate to IR applications is their

volatility. This difference is important when considered

with the battery operated requirement and the power

consumption characteristics of the devices. To minimize

battery requirements a maximum operating time must be

31

designed into the IR. This time must be longer for the

volatile CCD's, since the IR must stay powered up until the

collected data can be dumped to a more permanent device. On

the other hand, MBM storage saves the data even after power

is removed. Consequently, the IR power supply can be

designed to operate only during the data acquisition task.

Because of its non-volatile nature, MBM is chosen over the

CCD as IR secondary memory.

In conclusion, the MBM system is chosen as secondary

storage for the new IR. RAM is eliminated because it is much

bulkier than MBM. CCD is not used because it is volatile and

requires a power source even after a data acquisition task is

complete.

Program Memory. From the beginning of the requirements

definition it has been assumed that program memory should be

non-volatile. Basically, there are two reasons for having a

non-volatile program memory. One is system flexibility.

This offers the advantages of being able to program the IR

long before a mission and to use the same program for several

missions without reprogramming after battery changes.

Another reason is that non-volitility increases IR

reliability. Volatile memories are susceptible to change

during a mission, destroying program execution. In addition,

a non-volatile set of chips need only be programmed once for

a particularly popular mission and they can be used for years

without reprogramming. Every time a memory is reprogrammed,

there is potential for introduction of errors. So, given

32

that program memory will be non-volatile, the types to be

considered in this analysis are: ROM, PROM, EPROM, and

EEPROM.

ROM and PROM are not suitable for IR program storage.

They are rejected because they can be programmed only once

and changes can not be made. This permanence feature is

undesirable since the capability for program changes is

inherent in the room-for-expansion criterion. Since non-

volatile memories exist that can be reprogrammed, there is no

need for further consideration of ROM's and PROM's.

Two common types of non-volatile, reprogrammable

memories are EPROM and EEPROM. Basically they differ in the

way they are erased. EPROM's generally require UV light,

while EEPROM's are erased electrically. Both types come in

CMOS, with 1K byte EEPROM's having the largest currently

available capacity; although, industry rumors are that

National Semiconductor will soon market the 27C16, a 2K byte

EPROM (Ref 29:96).

Due mainly to the larger capacity of the EEPROM, it will

be used in the new IR. The EEPROM of choice is the Hughes

Aircraft HNVM3008, since it is the only 1K byte EEPROM that

is commercially available.

33

Data Acquisition Ports. An analog interface to the

physiological sensors was previously analyzed in the Moore

thesis. Based on four requirements:

1. 12 channel input, minimum,
2. 144 conversions per second, minimum,
3. conversion error of less than 1 percent, and
4. low power consumption,

Moore chose the National Semiconductor ADC0817CC, a 16

channel monolithic A/D converter (Ref 21:10).

Since Moore's thesis was published, user requirements

have changed slightly. New requirements are for 16 input

channels and a 122 samples per second conversion rate. Both

of these desired characteristics are supported by the

ADC0817. So, for the reasons initially chosen by Moore, and

as tempered by new requirements, the ADC0817 is used for the

analog data acquisition ports of the new rR.

Buffer Memory. Buffer memory is used primarily as an

area where physiological data is collected and preprocessed

before being transferred to secondary memory. This activity

implies the need for a read/write memory, or RAM. In the

following analysis, the three IR characteristics of - battery

operated, unobtrusive size, and 16 sennors - drive RAM

selection.

As derived earlier, the bat tery operated and

unobstructive characteristics imply the need to minimize

power consumption. A table of RAM characteristics, provided

for Hitachi memories, indicates that CMOS static RAM's have

low power consumption relative to other types of RAM (Ref

14:4). Even dynamic RAM, which characteristically draws less

34

power than static RAM's (Ref 9:123), draws more power than

Hitachi's CMOS RAM. Using RAM from another manufacturer for

comparison verifies this relationship. As an example, the

Intel 2117 dynamic RAM consumes 462 mW when operating and 20

mW in standby (Ref 4:1-26). By comparison, the Hitachi

HM6116LP draws 300 mW operating and .5 mW standby (Ref

14:72). So, to minimize power consumption, buffer memory

should be CMOS static RAM.

The third characteristic, the need for 16 sensors,

provides a basis for estimating RAM size. Using projections

made by Moore, there should be enough RAM to store 25 blocks

of data. This allows buffer space for one and a half times

the 16 data channels, leaving one block for program

scratchpad memory. The eight aaditional data blocks are used

to start new buffers once old ones are full and awaiting

output to secondary storage (Ref 14:20-2).

The choice of MBM as secondary storage sets the buffer

block size to 64 bytes. In its minimum power consuming

configuration with error correction enabled, MBM transfers

data in 512 bit (64 byte) blocks (Ref 2:2-8,3-6). Combined

with the need for 25 data blocks, buffer memory should be a

minimum of 25 * 64 - 1600 bytes, or effectively 2K bytes.

Several manufacturers offer 2K byte, CMOS, static RAM's.

Of them, Hitachi offers the most flexible line of chips (Ref

13:2813). That is, they offer a wide range of power drains

and access times (Ref 14:66-75). The lowest power consuming

model offered is the HM6116LP and is chosen for IR RAM.

35

Pc Mp(EEPROM)

-Mp (RAM)

M s(MBM #0)

1 -Ms(MBM #8)

(T(Sensor #1)
aT(A/D Converter)-K

- TSensor #16)

I
T(Parallel Output)

Pc (NSC800, 2.5MHz)
Mp (HNVM3008, 8K bytes)

Mp (HM6116LP, 2K bytes)
Ms (Intel 7110, IM bit)
T (ADC0817CC)

Figure 2. The Proposed New IR.

Conclusions

Component choices made in the above analyses contribute

to a more definitive IR architecture than that outlined in

Figure 1. Figure 2 is a PMS diagram showing the chip level

components for the new IR. Having defined components for the

36

new IR, the next step is to build a prototype to prove the

proposed design meets user requirements. The next chapter

describes the IC level hardware architecture of the new IR

prototype.

37

III Prototype Construction

The proposed new IR, diagrammed in Figure 2, is an

architecture for satisfying the required and desired

characteristics outlined in Chapter II. The prototype IR

described in this chapter provides a tool for determining how

well the proposed architecture functions. Tests run with the

prototype provide information for tailoring the proposed IR

before final circuit boards are produced.

The IR prototype implements the architecture of Figure 2

with two minor but important changes. One is that RAM is

increased to 8K bytes. This allows space for investigating

effects of buffering data in blocks larger than 64 bytes,

the minimum required by the MBM. The other change is that

only one MBM module is implemented. The original purchase of

Intel Bubble Prototyping Kits (BPK-72) allows two separate

128K byte storage units to be built. To obtain a 256K byte

memory, either an Intel iSBC 254 board must be purchased, or

an interface must be designed to combine the BPK-72 boards.

Because of time constraints neither option was pursued.

The schematic diagrams used for discussing the

components of the IR in this chapter are the same ones used

to build the IR prototype. While the diagrams are scattered

throughout this chapter, they are combined into one five page

figure in Appendix A.

38

Operating Voltage

The prototype IR requires +5V, +12V, and -12V for proper

operation. The +12V supply is required by both the MBM and

A/D Converter peripherals. The -12V supply is used only by

the A/D Converter peripherals (Refs 2:2-8; 10). Other parts

of the system use +5V.

The main processor and its support IC's are fabricated

with P2CMOS technology. While P2CMOS chips operate over a

voltage range of +3V to +12V (Ref 24:4-6), they are biased at

+5V in the IR. There are three reasons for choosing a +5V

power supply. One is that at +5V the NSC800 operates at 2.5

MHz, as analyzed in Chapter II. Another reason for choosing

a +5V power supply is to keep power consumption low, since

power dissipated by a CMOS gate is directly proportional to

its operating voltage (Refs 3:6-5; 9:32-33; 18:585). The

third reason involves interfacing the various chips within

the IR. Both the Bubble Memory Controller (BMC) and the

EEPROM must operate at +5V (Refs 2:2-8; 12). While voltage

translation circuitry could be used between components of the

IR, interfacing is simplified and chip count is reduced if

all components operate at a single voltage.

IC Technology Mix

All IR circuitry, except for the MBM, is constructed

with CMOS derivative IC'S. The MBM peripheral was built

using customized circuits provided by the manufacturer.

Intel provides a BMC for interfacing the MBM to various

39

TABLE VI

IC Family Voltage Characteristics
(Refs 24:A-4; 15:12; 3:1-185)

Voltage Type P2CMOS CMOS HMOS

Logical 0 Input (max) 1.5 1.5 .8

Logical 1 Input (min) 3.5 3.5 2.0

Logical 0 Output (max) .4 .4 .4

Logical 1 Output (min) 4.5 4.6 2.4

CPU's. The technolgy used to fabricate the BMC is Intel's

High-performance MOS (HMOS). Connecting HMOS to CMOS is

straight forward but requires some precautions.

HMOS is a NMOS derivative technology (Ref 9:30). Its

direct current voltage characteristics are summarized in

Table VI along with characteristics for P2CMOS and CMOS. The

devices used to obtain the ratings in Table VI are the

NSC800, the ADC0817, and the Intel 7220. As seen in Table

VI, the three technologies are directly compatable at the

logic 0 level. That is, the voltage level output by any one

technology is below the input threshold of the others.

However, potential problems arise at the logic 1 level.

While both CMOS technologies have output voltages above the

input threshold of HMOS, the opposite is not true. An HMOS

output of 2.4V is not guaranteed to be recognized as a high

input to either P2CMOS or CMOS. So, in cases where HMOS

provides input by either P2CMOS or CMOS, a pull up resistor

40

with a value in the neighborhood of 10K ohms should be

included in the circuit (Ref 3:6-8; 8:42). Pull up resistors

used in the IR are 10K ohms.

Board ayu

The IR prototype exists on a wirewrap card. Figure 3 is

a map that shows the major component parts of the IR as they

appear on the card. To aide in tracing system bugs, the

wiring used in the IR is color coded. The code used is:

Red - +5V,

Black - Ground,
Blue - Data Bus,
Yellow - Address (7 - 0) Bus
Orange - Address (15- 8) Bus
Green - Control Bus
White - Other

EEPROM

CPU RAM

I/O PORTS

BUS CONNECTOR

Figure 3. Major Component Map of IR Prototype.

41

Bus Structure

The three system busses of the IR carry data, address,

and control information. These three busses intersect at the

CPU. To keep them operating at their full rated speed,

connection of devices to the busses must be scrutinized.

Since CMOS has a high input impedence, it draws only

leakage current while it is in a steady state. Consequently,

fan-out for CMOS to CMOS interfaces is typically 50 devices

(Ref 18:67-8). However, circuit capacitance puts a practical

limit on the number of devices that a CMOS gate can drive.

CMOS gate inputs add capacitive loads to circuits. As the

number of inputs increase, so does the time that it takes to

charge the additional capacitance. The result is increased

propagation delays between the output and input of gates (Ref

3:6-4 - 6-7,6-17).

The drive capacity for the NSC800 family of chips is

rated at 100 pico-farads (Ref 24). Since input capacitance

specifications are not available for many of the IC's used in

the IR, each input is assumed to add a 15 pico-farad load to

the circuit (Ref 3:6-17). This assumption limits the fan-out

of CMOS gates used in the IR to six, leaving a small margin

for error. In all but one case, fan-out is less than or

equal to six within the IR. The connection of eight EEPROM's

to system bus buffers violates the limit. However, that

portion of the IR works consistently and is a logical block

to which no hardware additions are anticipated.

42

TABLE VII

IR Bus Connector Definition

Pin :Signal Pin Signal
Number Function Number Function

1 +5V 50 Open
2 GND 49 So
3 +12V 48 CLK
4 Data 0 47 PowerSave*
5 Data 1 46 Data 4
6 Data 2 45 Data 5
7 Data 3 44 Data 6
8 WR* 43 Data 7
9 Addr 0 42 RD*

10 Addr 1 41 Addr 4
11 Addr 2 40 Addr 5
12 Addr 3 39 Addr 6
13 XWAIT* 38 Addr 7
14 Addr 8 37 IO/M*
15 Addr 9 36 Addr 12
16 Addr 10 35 Addr 13
17 Addr 11 34 Addr 14
18 Resetln* 33 Addr 15
19 BREQ* 32 ResetOut
20 NMI* 31 BACK*
21 RSTB* 30 RSTA*
22 INTR* 29 RSTC*
23 INTA* 28 Open
24 S1 27 GND
25 -12V 26 +5V

A 50 pin connector is provided with the IR prototype so

that external devices can easily be added. Table VII defines

the pin-out for the connector. Restricting the bus to 50

pins resulted from the availability of connectors during late

phases of the project. While more control lines could be

defined for a more general bus, the 50 pin bus is sufficient

43

for most applications, including the Recorder Debugging Tool

(see Appendix D) interface.

The reason for providing a connection to the IR bus

structure is so that development and debugging circuits can

easily be added. When adding such circuits, a designer must

be aware that the connector is not buffered and every gate

interfaced through the connector loads the CPU. Therefore,

it is recommended that, at a minimum, every pin used as an

input by an external device be buffered by a CMOS gate. This

presents only a single CMOS load to the CPU. Because of the

conservative loading design of the IR, adding single CMOS

loads should not effect IR operation.

CPU

The CPU for the IR prototype consists of the NSC800 and

its clock, reset, wait state, and bus demultiplexing

circuitry. Figure 4 is a schematic showing how these

circuits are integrated to form the CPU. This schematic is

referenced throughout the discussion of CPU components.

System Clock. Operating at +5V, the microprocessor used

in the prototype has a maximum rated speed of 2.5 MHz. This

operating frequency is controlled by an external timing

circuit which must be twice as fast. The NSC800 contains an

on-chip oscillator which divides the external timing signals

to produce a square wave clock signal. This clock is the

basis for machine cycle timing within the NSC800. The

circuit used to produce the 5MHz external clock is one

suggested in the NSC800 Microprocessor Family Handbook. It

44

- -
GNO

A3l

Figure. 4.CP

40

consists of a 5 MHz crystal, a one mega-ohm resistor and two

4.7 pico-farad capacitors (Ref 24:4-8 - 4-9, A-10).

System Reset. Another circuit mentioned in the NSC800

Handbook is one to provide orderly power-up for the system.

Since the NSC800 has an on-chip Schmitt trigger, the

manufacturer claims that a simple Resistor-Capacitor network,

connected to RESET-IN*, provides a proper power-up reset

function. Following manufacturer directions, repeated

experimentation with various combinations of resistors and

capacitors could not produce a clean power-up sequence.

As the IR powered up, the NSC800 reset many times.

These multiple resets were observed by monitoring portions of

the data, address, and control busses with a logic analyzer.

Two phenomena indicated that the NSC800 had an unstable

period while it was resetting. One was that RESET-OUT

toggled randomly as system power approached +5V. The other

was that instruction execution began at location 0000K each

time RESET-OUT went low, with various numbers of machine

cycles being completed before RESET-OUT returned high. Once

RESET-OUT stabalized at OV, the processor operated

predictably.

To correct the reset problem a Schmitt trigger was added

to the reset circuit between the Resistor-Capacitor network

and the RESET-IN* pin of the NSC800. The Schmitt trigger

circuit consists of two inverters and a feedback network.

The circuit used in the IR was adapted from one described in

46

Douglas Hall's book (Ref 9:35-6). After the external Schmitt

trigger was added, the NSC800 reset properly.

Wait State Generator. Another component of the CPU is

the wait state generator. Wait states must be added to

memory read cycles whenever program memory is accessed.

Accesss time for the HNVM 3008's is slow enough to require

one extra machine cycle for transferring data to the NSC800.

In addition to generating wait states for EEPROM accesses,

the wait state generator must also insure that machine cycles

are not added when other memory, or any peripheral, is

addressed. The last function supported by the wait state

generator is to gate wait state requests from external

devices, such as the Recorder Debugging Tool, to the NSC800.

An inverter, a pull-up resistor, and the two data flip-

flops (FF) of IC number C4 form the wait state generator.

Basically their function is to hold the WAIT* pin of the

NSC800 high until a wait state is required. Two conditions

are sufficient requirements for generating wait states. One

is when the XWAIT* pin of the IR bus is pulled low by an

external device. When this happens, the FF controlling WAIT*

is cleared and multiple wait states are generated until

XWAIT* returns high. The other condition for generating wait

states is when a EEPROM address is accessed. During these

times only one wait state is necessary. To add one wait

state, the WAIT* pin of the NSC800 must be pulled low for one

machine cycle following the latching (ALE - 1) of a EEPROM

address.

47

+X cLK XWAIT i

Figure 5. Wait State Generator

Generation of a single wait state is explained using

Figure 5, a more explicit drawing than that of Figure 4. The

wait state generator works by passing the current value at

the "D" input of the left FF to the "Q" output of the right

one. Conseqently, when a peripheral is addressed, WAIT* =

IO/M* = 1 and no wait states are generated. When memory is

addressed, a zero passes from the left to the right FF. But,

if the memory access is to RAM, the right FF is preset by

RAM* before WAIT* - 0 is recognized by the NSC800; and again

no wait states are generated. If EEPROM is addressed, RAM* =

1, WAIT* - 0, and the NSC800 adds an extra machine cycle to

its memory access operation.

To keep from adding more than one wait state, WAIT* has

one clock cycle in which to reset. This cycle is between the

falling edges of the system clock one cycle before the added

48

wait state and during the wait state (Ref 24:8-8). To

complete this reset within the allotted time, the left FF is

immediately preset whenever WAIT* becomes zero. The

resulting high later passes to the right FF an the rising

edge of the next NSC800 clock pulse. Under this scenario

WAIT* is held low long enough to add only one machine cycle

to EEPROM access operations.

Bus Demultiplexer. The low order byte of the address

bus is multiplexed with the data bus in the NSC800. The two

are separated by a widely used circuit employing an 82PC12,

eight bit I/0 Port (Refs 4:6-56; 24:8-4 - 8-6). During the

first machine cycle of a memory or peripheral access, an

address appears on the multiplexed bus. Before the cycle

completes, an ALE pulse causes the address to latch into the

82PC12. Followiing this latching sequence, the multiplexed

bus is dedicated to use as the data bus.

One other function performed by the 82PC12 is to place

the low order portion of the address bus in a tri-state mode

whenever BACK* - 0. This feature is intended for systems

which employ direct memory accessing. While the IR

prototype does not currently employ direct memory accessing

internally, the capability is used by an external device -

the Recorder Debugging Tool. Connecting BACK* to the 82PC12

is transparent to normal IR operation and could be removed.

But, the connection is important for debugging purposes, so

it remains.

49

PIOO

50

Primary Memory

Primary memory is split between EEPROM and RAM. The 8K

EEPROM space is used as program storage and occupies the

address space from OOOOH to IFFFH. RAM is provided for use

as buffer storage between the A/D converter and the MBM

peripheral. It occupies addresses 2000H through 3FFFH.

The two types of primary memory are physically separate

components within the IR prototype. With the exception of

one RD* line, signals from each component are interfaced to

the CPU through their own set of buffers. The RD* line is

shared between EEPROM and RAM only to reduce fan-out of the

line from the CPU. EEPROM requires nine RD* connections.

With the fan-out limit of six, EEPROM needs two buffered RD*

lines. Since EEPROM does not use all 12 of the available

loads, one is connected to RAM. This connection deletes the

requirement for RAM to load the CPU's heavily used RD* line.

In addition to their physical separation, EEPROM and RAM

are logically separated by their addresses. That is, address

bit 13 (A13) determines which primary memory component is

enabled. When A13 is zero, EEPROM is accessed; and when it

is one, RAM is accessed. While A13 determines which primary

memory component is enabled, the IO/M* and RFSH* control

signals determine when they are enabled. All three signals

are combined by the logic in the lower left corner of Figure

6 to provide proper enable pulses. Basically, the logic will

output an active low memory enable signal whenever the CPU

wishes to access memory (IO/M* - 0) during times other than

51

refresh cycles (RFSH* - 1). The inverse of this memory

enable allows A13 and its complement to pass through NAND

gates and choose the primary memory component to be accessed.

IR hardware does not contain logic to protect software

from attempts to address memory locations above 3FFFH. While

the NSC800 is capable of addressing 64K bytes of memory,

EEPROM and RAM occupy only the low order 16K bytes. So, any

IR memory location can be addressed using only 14 bits.

Address decoding logic ignores the remaining two address

bits, truncating A14 and A15 from addresses greater than

3FFFH. It is the software designer's responsibility to

insure that programs limit their accesses to the available

OOOOH to 3FFFH address space.

Program Memory. With the exception of the logic gates

described above and IC number R20, Figure 6 shows the EEPROM

component of the primary memory. PlO, P11, and P12 are

buffers; P19 is an address decoder; and P30 through P37 are

EEPROM' s.

PlO and P11 are only enabled when a EEPROM address is

accessed. Since one of the RD* control lines is shared with

RAM, P12 is enabled whenever either memory component is

accessed. Direction control on P11 and P12 is harcwired to

pass information from the CPU to memory. RD* supplies

direction control for the data bus buffer, Pl0. Even though

the current IR design does not support writing to the

EEPROM's, direction control for the data bus buffer can not

52

A9-8 A9-8 CE* ALE

A7-0 CS (CS*)*

AD7-O D7-0 OE* RD*

FIGURE 7. Conventional HNVM3008 Interface

be hardwired. Doing so causes bus contention problems with

the CPU.

Bus contention stems from the multiplexed nature of the

data bus. The EEPROM data bus buffer is enabled whenever

A13 - 0, IO/M* = 0 and RFSH* = 1. These conditions are true

at the beginning of each instruction cycle which accesses

EEPROM. However, during the first part of the cycle the

multiplexed bus contains a valid address. Hardwiring the

direction control would cause interference during this

portion of an instruction cycle. So, EEPROM is only granted

control of the data bus while RD* is low.

HNVM3008's are used for storage in the EEPROM portion of

primary memory. The way they are interfaced to the CPU is

unconventional by manufacturer standards. The manufacturer's

pin-out descriptions of the HNVM3008 leads to the design

shown in Figure 7.

53

A more optimum design is used in the IR. A comparison

of Figures 6 and 7 show the differences between the two. One

difference is that the IR design does not use the HNVM3008's

on-chip address latch to demultiplex the address/data bus.

Instead, the separated data and address busses, provided by

the CPU, are used. This reduces the number of loads on the

address/data bus by one half. Consequently, the

demultiplexed address bus is used to replace one of the

address/data bus loads on the CPU. This trade off is

desirable since the fan-out from the CPU is greater for the

address/data bus th.i for the demultiplexed address bus.

Another benefit of the customized interface for the

HNVM3008's is that chip select (CS) pulses from the address

decoding logic do not have to be inverted. This reduces chip

count in the IR by at least one, and possibly two. Another,

although minor, benefit of the IR configuration is that one

less control signal is required. That is, the ALE signal is

not used by program memory.

Buffer Memory. The buffer memory component of primary

memory consists of the circuit diagrammed in Figure 8, along

with IC number R20 of Figure 6. In Figure 8, R13 through R15

provide full buffering of lines connected to the CPU. Memory

itself consists of four 2K byte static RAM's. Consequently,

four CS* signals and an 11 bit address are sufficient for

addressing any byte within buffer memory. The four CS*

signals are generated by a three-to-eight line decoder, since

smaller decoders are not available in P2CMOS. IR production

54

400M - AOO

it

j7I

171

'08
FiA r . A

553

designs may find it beneficial to change to a two-to-four

line decoder fabricated in another CMOS technology.

Peripheral Devices

IR peripheral devices are shown in the schematics of

Figure 9 and 10. Accessing of peripherals is done using I/O

mapped addressing. During I/O operations, the address of the

selected peripheral appears on both the low and high order

bytes of the address bus (Ref 24:A-9). This duplication of

the peripheral address allows use of the high order byte for

selecting specific I/O ports, and minimizes loading of the

heavily used address/data bus.

With the exception of BBH, peripheral addresses are

broken down into a 3 bit channel address and a five bit port

address. The channel address is essentially an encoded chip

select for enabling one of the three chips that contain

addressable ports and registers. The NSC810 is the

p ripheral chip with the most addressable entities, requiring

five bits to access all of them. Hence, five bits are used

to address any port on a specified channel. I/O address BBH

is internally reserved by the NSC800 as an interrupt control

register (Ref 24:A-17).

Bits AIl5, A14, and A13 carry the I/O channel address.

U25 decodes these address bits into chip selects. The timers

and I/0 ports are attached to channel I - A15,A14,A13 = 001.

Channel 2, 010, contains the A/D Converter and channel 4,

100, contains the MBM. These channel addresses are listed

along with their associated port addresses in Table VIII.

56

Table VIII

I/O Port Mapping

(Refs 2:3-I - 3-3;
3:1-189; 24:A-32)

Binary Type
Address Port Function

0010 0000 R/W Port A
0010 0001 R/W Port B
0010 0010 R/W Port C
0010 0100 W Port A Data Direction Reg.
0010 0101 W Port B Data Direction Reg.
0010 0110 W Port C Data Direction Reg.

0010 0111 W Port A Mode Definition Reg.
0010 1000 W Port A - Bit Clear
0010 1001 W Port B - Bit Clear

0010 1010 W Port C - Bit Clear

0010 1100 W Port A - Bit Set
0010 1101 W Port B - Bit Set
0010 1110 W Port C - Bit Set

0011 0000 R/W Timer 0 (LSB)
0011 0001 R/W Timer 0 (MSB)
0011 0010 R/W Timer 1 (LSB)
0011 0011 R/W Timer 1 (MSB)
0011 0100 W Stop Timer 0

0011 0101 W Start Timer 0

0011 0110 W Stop Timer 1
0011 0111 W Start Timer 1
0011 1000 R/W Timer 0 Mode

0011 1001 R/W Timer 1 Mode

01OX 0000 R A/D Converter Port 0
OIOX R

01OX R A/D Converter Port
OloX . R

OloX 1111 R A/D Converte. 'ort 15

10OX XXXO R/W MBM Data Port

10OX XXXI R MBM Status Register
10OX XXXI W MBM Command Register

1011 1011 W Interrupt Control Register

57

X's appear in the table where address bits are ignored for a

particular channel. A/D converter port assignments

correspond to the low order four bits of the peripheral

address and are compressed in the table. Note that port

lOOX XXXI has two different definitions, depending on whether

data is being read or written.

Timers. The IR prototype uses both of the timers

contained on the NSC8I0. Timer 0 is wired for generation of

fixed interval interrupts, while Timer 1 provides a clock for

the A/D converter.

The CPU provides a clock input frequency of 2.5 MHz to

both timers. This input frequency exceeds the maximum for

proper timer operation. Therefore, clock inputs must be

prescaled. The FSC810 allows for independent scaling of

clock inputs to both counters. Scaling factors for Timer 0

are 1, 2, and 64. Those for Timer 1 are 1 and 2. Since

maximum timer input frequency is 2 MHz, a scaling factor of

at least two allows for proper operation of the timers (Ref

24:A-27 ,A-36). Chapter IV describes how software controls

operation of the timers.

Output from Timer 0 is connected to the RSTA* interrupt

pin of the CPU. To provide interrupts that meet hardware

design objectives (see Interrupt Structure), Timer 0 must be

programmed as an accumulative timer. In this mode, output

from the timer is activated at fixed intervals. The length

of these intervals range from 800 nanoseconds to 1.7 seconds.

This range supports the design requirement for an 8.3

58

CMTRL UOrML
Am 4001
ORM

7-1

it

TS USO

CLK
C49 dr
REScr ZZ
ricur
RON

-Z tax

0ww
"0

7
f

407 --- A-
GNO

amo
A97

.2

LAZ3 LA22

jo

L rip)- GNO 72F
c4ac RER
REF&I COMPO

V49
00

CORlwam

0 Asr c
ift 14

7

INO

Z 1;4.3

Figure 9. 1/0 Ports, Timers, and A/D Converter

59

millisecond sample interval. It also allows a wide time

range for changing sensor sampling rates.

Timer 1 is used in its square wave generator mode to

provide the clock input for the A/D converter peripheral.

Valid input frequencies for the ADC0817 range from 10 KHz to

1200 KHz, with manufacturer specifications being computed at

640 KHz (Ref 3:1-186 - 1-187). In its square wave mode, with

a prescaled clock input of two, Timer 1 can provide a range

of output frequencies from 1250 KHz down to 19 Hz. Note,

however, that the distribution of frequencies is not uniform

throughout the range. Valid frequencies are clustered more

heavily towards the low end. The sequence of valid Timer I

output frequencies follow the pattern:

1250K / 1 = 1250 KHz,
1250K / 2 = 625 KHz,
1250K / 3 = 416.5 KHz,

1250K / 65,536 19 Hz.

General I/. In addition to the two timers described

above, the NSC810 provides two general purpose I/O ports for

the IR prototype. Each port is eight bits long and can be

addressed at the bit level. In addition, the direction of

data flow, in or out, is selectable for each bit. Therefore,

one port can carry both input and output at the same time.

Another feature of the NSC810 is that Port A is capable of

strobed I/O. This allows handshaking between the IR and an

external CPU for such functions as dumping data from the IR

to a database, or for programming EEPROM's without removing

them from the IR. (Ref 24:A-31 - A-33)

60

The general purpose I/O ports have not been hardwired to

take advantage of any particular capability of the NSC810.

The ports were wirewrapped only far enough to verify that

they communicate properly with the CPU. Configuring the

ports is best handled in parallel with software development.

A/D Converter. The fact that the NSC810 has an 8085

hardware architecture simplified interfacing of the A/D

converter. National Semiconductor's CMOS Databook contains a

schematic for interfacing the ADC0817 to an 8085

microprocessor (Ref 3:1-193). Construction of the A/D

Converter peripheral followed National Semiconductor's

proposal. Still, clarification of a few of the connections

is appropriate.

The ADC0817 uses the low order four bits of the

peripheral address to select the sensor channel to be

converted. To minimize bus loading on the multiplexed

data/address bus, the channel select is obtained from bits 8

through 11 of the address bus.

Two factors determine the voltages to be used as

references in the A/D Converter. One is the bias voltage of

the ADC0817, and the other is the output voltage range of the

analog sensors (Ref 3:1-191). Since the bias voltages are

ground and +5V, and since the analog sensors are conditioned

for OV to 5V outputs, reference voltages for the ADC0817 are

OV and +5V. The low reference is obtained by a direct

connection to ground. Capitalizing on the fact that output

from a CMOS gate comes very close to the bias voltage of the

61

chip, the high voltage is obtained from the output of an

inverter.

Using the output of an inverter proved adequate for

showing that the ADC0817 worked properly. An oscilloscope

trace of the inverter output showed a constant 5V signal

being coupled with O.1V of noise. Assuming that the 0.1

256 = .4 millivolt error introduced by the noisy reference is

acceptable, use of the inverter as a positive reference is

adequate for the IR prototype. However, using inverter

references in a flyable IR is risky, as it depends on at

least two variables. One is that output from an inverter

gate is not guaranteed to equal the chip supply volatge.

Another is that the supply voltage in a flyable IR may

degrade with prolonged use of the batteries, resulting in a

decreased reference voltage. If allowances are not made for

these two variables in the flyable IR, then the voltage

reference circuit must be redesigned.

The end of conversion signal generated by the ADC0817

provides a conversion complete interrupt to the CPU. A

peculiarity exists in this structure. That is, the end of

conversion signal remains active until another conversion is

started. So, the conversion complete interrupt can not be

reset between sampling tasks without additional hardware.

Using a data FF to buffer the interrupt, the end of

conversion signal could pass to the CPU and be reset whenever

the converted data was read. While this method of

controlling the interrupt is simple, it requires an

62

additional chip. In keeping with the minimized bulk

requirement of the IR, a hardware solution is abandoned in

favor of software. Chapter IV discusses the software

solution to the conversion complete interrupt problem.

MBM. The schematic for the MBM peripheral appears in

Figure 10. Interface of the peripheral is simplified by the

fact that all data transfers take place through the BMC. The

hardware architecture of the BMC for interfacing

microprocessors looks similar to that of many peripherals.

That is, interfacing the BMC to a processor requires

connection of the data bus, address bus, read and write

strobes, chip select, and system reset. Additional pins are

provided for interrupt and direct memory access processing.

As mentioned previously, the BMC is an HMOS IC.

Consequently, two precautions are taken to insure accurate

communications with the P2CMOS CPU. One is that 10K ohm pull

up resistors are used at connections where HMOS provides

input to P2CMOS. The other is that P2CMOS outputs are loaded

with only one HMOS input.

The MBM is wired to take advantage of the interrupt

processing capability of the BMC. Active high signals for

buffer half full and operation complete are fed through

buffers to the RSTA* and INTR* pins of the NSC800. The need

for these interrupts is explained in the next section of this

chapter.

In addition to the signals mentioned above for

interfacing the BMC to the CPU, the MBM requires a 4 MHz

63

COITRRh-
A-

.0'0

Figur 1. RMou

641

clock having a 50 percent duty cycle. The circuit appearing

below U16 in Figure 10 is a crystal controlled oscillator for

providing the required clock. The circuit is an adaptation

of the one used for the NSC800 clock input. U17 provides

buffering to produce a constant load on oscillator output.

The oscillator with buffering provides a stable clock.

The MBM and drive circuitry is not shown in Figure 10.

Instead, only the connections that must be made from the BMC

to the MBM board are shown, The MBM is mounted on a BPK-72

printed circuit board, which has previously been tested using

the MBM Interactive Development System. Design of the MBM

peripheral for the IR prototype involved removing the BMC

from the BPK-72 and placing it with the other components of

the IR. A cable connects the MBM to the BMC for completing

communications within the MBM peripheral. Additional

connections, not shown in Figure 10, carry power to the

BPK-72.

Interrupt Structure

IR prototype design implements a hierarchy of

interrupts. Basically, there are two reasons why the IR

needs an interrupt capability. One is that it allows data

samples to be started at fixed, known intervals. Another

reason is that interrupts allow software tasks to run

concurrently. That is, several tasks can be initiated before

any one completes. Interrupt usage is clarified in following

paragraphs where the rationale for specific interrupts are

explained.

65

TABLE IX

IR Interrupt Structure

Interrupt CPU Interrupt
Priority Signal Function

1 RSTA* Fixed Interval Generator

2 RSTB* MBM FIFO Half Full

3 RSTC* A/D Conversion Complete

4 INTR* MBM Operation Complete
or

MBM Error

Five levels of interrupts are provided by the

prioritized interrupt request pins of the NSC800. Of the

five, only RSTA*, RSTB*, RSTC*, and INTR* are used. To

reduce hardware requirements, the interrupt structure relies

on the NSC800's Mode I processing scheme. In Mode I the

response to a recognized interrupt is a jump to one of the

NSC800's dedicated restart addresses. Other interrupt

processing modes require external hardware to generate a

restart sequence (Ref 24:4-16 - 4-21,A-15 - A-17). Table XI

outlines the interrupt structure used in building the IR

prototype.

The interrupt with the highest priority is the one

generated by Timer 0 of the NSC8I0, RAM-I/O-Timer chip. It

has the highest priority so that sampling intervals can be

precisely defined. As soon as Timer 0 interrupts, software

66

starts the A/D conversion of the next required sensor.

Should other interrupts be allowed to preempt the timer,

sampling intervals would have unpredictable lengths.

Consequently, the collected data would have an unknown skew

from sample to sample.

The interrupt with the second highest priority is the

one indicating that the MBM FIFO buffer is only half full.

Once an HBM opertion has started, "the user must keep up"

with the FIFO data buffer (Ref 2:3-8,3-17). "Keep up" means

avoiding FIFO underflow during writes, and overflow during

reads. Underflow and overflow problems stem from the fact

that the FIFO is only 40 bytes long, whereas, the shortest

MBM transfer is 64 bytes. In a system where only one bubble

is operating, as projected for the IR in Chapter II, the

maximum transfer rate is 50K bytes per second (Ref 2:3-5).

This translates to one byte every 20 microseconds. During an

MBM write which begins by filling the FIFO, the half full

interrupt activates whenever 22 bytes are empty (Ref 2:3-8).

This allows approximately 360 microseconds (18 x 20) before

an underflow occurs. Similarly, during a read operation the

half full interrupt indicates that 22 bytes are available for

input (Ref 2:3-8), !llowing 360 microseconds before a FIFO

overflow. In either case there is a time margin available

for servicing MBM FIFO half full interrupts.

Priority level 3 interrupts are less time critical than

the interrupts of higher priority. With projections derived

from Chapter II, the IR prototype has approximately 8.1

67

milliseconds in which to service A/D conversion complete

interrupts. At 122 samples per second, there are 8.3

milliseconds between the starts of samples. Allowing for the

typical conversion time of 100 microseconds (Ref 3:1-187),

there are 8.2 - .1 - 8.1 milliseconds between the time that

an interrupt occurs and the time that the next sample must be

initiated.

The interrupt with the lowest priority is the one

indicating that an MBM operation has either completed

normally or with an error. Both interrupts originate from

the same MBM pin. BMC status tells which event caused the

interrupt. During normal operation, servicing of these

interrupts is not critical.

Conclusion

This chapter has described the theoretical and practical

considerations involved in constructing the IR prototype.

Details of hardware construction for each component were

highlighted. Tie next chapter details software techniques

for driving this newly constructed IR prototype.

68

IV Hardware Verification Program

This chapter describes software used to verify the

design and construction of the IR prototype. The program

used to exercise the IR prototype is called IRTST. It is

located at the end of the chapter, in Figure 11. Throughout

this chapter, software descriptions are made with reference

to IRTST.

Verification of design and construction involves

exercising at least one capability of each component in the

system. While IRTST is not a comprehensive test of every

capability, it does show that the system components are

interfaced properly. In addition, it provides a basis for

understanding how the components operate. Reference material

is available in Appendix E for expanding this basis and for

tailoring the components to meet future prototype software

requirements.

In general the flow of execution through IRTST is:

I. initialize the components,
2. fill a buffer with information obtained

alternately from an input port and the
A/D Converter,

3. dump the filled buffer to the BMC FIFO,
4. read the BMC FIFO, and
5. compare the input and output of the BMC

FIFO.

The operations of step 2 are accomplished under interrupt

control. Every time a byte of information is moved to the

buffer, it is displayed on an output port and the system is

69

halted for about a second. Timer interrupts restart the

system from its halted state.

Throughout program execution, values for indicating

program status are written to an output port. A monitor on

the output port reveals the following sequence:

1. FF - system reset,

2. Al - this value was hardwired on the input
port for the test,

3. XX - byte obtained from analog sensor #7,
4. ... subsequence 2 and 3 are repeated 40

times (the size of the BMC FIFO),
5. 55 - constant output for 3 seconds to

indicate that the BMC FIFO has been
written and is about to be read,

6. DO - successful completion, or
FF - FIFO write and read do not match.

Monitoring this sequence helps to verify that the program is

executing properly and that IR components are functioning as

expected.

During construction of the IR prototype, programs were

written to assist in debugging hardware as it was added to

the system. The fact that all of these test programo,

including IRTST, executed correctly shows that both the CPU

and program memory function properly. The software provided

by IRTST verifies operation of the other components.

Buffer Memory

The sequence of indicators outlined above shows that RAM

functions properly. The main reason for this conclusion is

that the code, which produces the outputs in steps 2 and 3,

relies on subroutine calls and interrupt servicing. Both of

these tasks use a program stack to temporarily store return

addresses. If RAM were not working, invalid addresses would

70

be retrieved from the stack, resulting in unpredictable

program behavior.

Another factor for concluding that RAM functions

properly involves buffering of data. At address 0164H, an

output buffer is dumped to the BMC FIFO. Later, at 0178H,

the FIFO is read into a separate input buffer. Then the

output and input buffers are compared. The fact that IRTST

ends with a DO status reinforces the belief that RAM operates

properly.

Timers

The NSC810 is equipped with two general purpose timers,

each having six software selectable modes of operation. Both

timers are used in the IR prototype. Output from Timer I is

the master clock input for the A/D Converter. Timer 0

provides a fixed interval interrupt for the CPU.

Before either timer is used it must be initialized. For

Timer 0 this involves writing a control byte to the Timer

Mode Register. For Timer 1, it involves setting the

direction of data flow for pins 1, 2, and 5 of the NSC8I0 in

addition to setting the Timer Mode Register (Ref 24:6-7 - 6-

12, A-34 - A-38). Code appearing between addresses 0113H and

012DH shows how the timers were initialized for testing the

IR prototype.

Timer 1. The five instructions used to configure and

start Timer 1 are all that are needed to provide a clock for

the A/D Converter. The first two instructions, at Ol1FH,

71

configure the timer as a square wave generator. The next two

instructions init.alize the generator's output frequency,

while the instruction at 0129H starts the generator. The

output frequency provided by IRTST is as close as possible to

the typical operating frequency of the ADC0817. With the

input frequency to the timer being divided in half by the

mode setting, and with a timer count value of one, Timer I

output is 625 KHz. During testing this output was verified

with an oscilloscope.

Timer 0. To provide fixed interval interrupts to the

CPU, Timer 0 is configured as an Event Counter. The event

counter works by generating an active output whenever a user

loaded count reaches zero. Timer output is deactivated by

reading the count value. (Ref 24:6-8)

The six instructions starting at address 0113 H,

initialize Timer 0 in two important ways. One is that they

produce an active output every 0.95 (= 2.5 MHz / 64 / 40960)

seconds. The other way is that timer output is active when

low. The polarity of Timer 0 output is important since it is

connected directly to the RSTA* pin of the NSC800. This

connection also forces any IR programs that enable RSTA* to

include interrupt servicing routines.

Once an RSTA* interrupt is recognized, the NSC800 jumps

to location 003CH for its next instruction. At that point

IRTST software contains a jump instruction to the Timer 0

interrupt servicing routine, TO$HNDL. Since the timer

interrupt is only being used to awaken the CPU from a halt

72

II

state, TO$HNDL needs only to deactivate Timer 0 output and

reenable NSC800 interrupts. Upon exiting TO$HNDL, control

returns to address 019FH, followed by a return to program

execution.

The statement - that control passes to 019FH after Timer

0 interrupt processing - is made with confidence. The

interrupt frequency is intentionally low to simplify the

verification process. All tasks within the IRTST program

take much less than 0.95 seconds to execute. Therefore, the

CPU is always in a halt state at 019EH before Timer 0

interrupts. Interrupt frequency will be much higher in

prototytpe software, possibly causing return addresses to be

unpredictable.

General 1/O

As mentioned in Chapter III, wiring of I/0 ports was

deferred until prototype software requirements are defined.

At this time it is impossible to predict the mix of I/O pins

required for a flyable IR. Therefore, verifying general I/O

operation is restricted to showing that both input and output

are available through the NSC810.

While the NSC810 provides 22 pins for general purpose

I/0, only 16 are available within the IR. The other six are

used for Timer 1 and strobed I/O. The 16 available pins are

split between Port A and Port B. However, the bits of each

group are individually addressable in any combination of

input and output (Ref 24:6-3 - 6-4,A-31 - A-33). This

73

flexibility is another reason why design of system I/0 was

postponed.

IRTST does not test every capability of the NSC810 I/O

ports. Instead, Port A is initialized for strobed output,

and Port B is initialized for input. To verify operation of

the output port, a one byte monitor is connected to Port A

during testing. An AlH is hardwired to Port B, insuring that

input values are known constants.

As with the timers, the I/O ports of the NSC810 must be

initialized before they are used. Important tasks during

initialization are to set the direction of data flow through

each pin of the two ports and to set the type of I/0 to be

performed by Port A. Type of I/O does not have to be set for

Port B since it is capable of only basic parallel I/0.

However, Port A has an additional capability for strobed I/0.

When strobed I/0 is enabled, an additional task of

initializing the data direction for the strobe control pins

must be done. The instructions between address 0103H and

0111H perform the initialization tasks outlined in this

paragraph.

A/D Converter

Obtaining data samples from the A/D Converter can be as

easy as reading and writing an 1/O port. To begin the

conversion process, a program selects the desired channel via

an output instruction to the proper address. The single

instruction at 0147H is an example. The data byte output is

irrelevent to the conversion process. At some later time,

74

when the conversion is complete, the program reads the sample

value from the A/D Converter. The instruction at 0301H

illustrates reading the sample. However, in a more general

case, the input address does not have to match the output

address. Since the A/D Converter only has one register in

which to hold sampling results, any address read will

retrieve the value of the last sample started.

While obtaining sample data is straightforward,

coordinating the A/D Converter's interrupts is more

challenging. As alluded to in Chapter III, the IR prototype

does not contain hardware for clearing conversion complete

interrupts. From the time one sampling task is complete to

the time that another is started, the conversion complete

interrupt remains active. Because the interrupt can not be

reset, it must be managed differently from interrupts such as

RSTA* which can.

The conversion complete interrupt is assigned to the

RSTC* pin of the CPU. The method for managing RSTC* is to

keep it disabled within the NSC800 until a sample is

requested. This management takes place in three different

locations within IRTST. First, during system initialization

RSTC* is disabled. This is accomplished by writing a zero to

the RSTC* bit within the Interrupt Enable Register of the

NSC800 (Ref 24:A-17). The module at address 012FH shows how

the RSTC* interrupt is disabled while other interrupts are

enabled. A second place where RSTC* is managed is at 0149H.

There the conversion complete interrupt is enabled just after

75

a sample convers ion is requested. The convers ion complete

interrupt servicing routine, ADC$HNDL, is the last place

where RSTC* is managed. Again, RSTC* interrupts are disabled

while others are enabled, exactly as was done during system

initialization.

In addition to enabling the RSTC* interrupt at location

0149H, RSTA* was also enabled. This action is a consequence

of the fact that bits within the Interrupt Enable Register

can not be individually addressed. Still, RSTA* is enabled

with confidence, knowing that it is always enabled except

when it is being serviced. A more complex algorithm for

enabling interrupts may be required for the increased

interrupt activity in the flyable IR.

BMC

All requests for MBM I/0 pass through the BMC. Because

the MBM peripheral does not work, a first step in tracing the

malfunction is to verify communications between the CPU and

the BMC. One simple test for determining proper

communications is to write and read a test pattern using the

FIFO registers within the BMC.

The BMC contains many registers, but only a single

address line. Therefore, a channel command word must be

written to the BMC telling which register is to be accessed

(Ref 2:3-1 - 3-3). The two instructions at 01601H illustrate

how the BMC is initialized for accessing the FIFO. Once the

BMC points to the FIFO, it is available to the system as a

76

general purpose FIFO (Ref 2:3-8). The instrutions at 0164H

show how a data buffer is dumped to the FIFO using an NSC800

block 1/0 command. Similarly, the FIFO is read at 0174H.

Conclusion

The program illustrated and described in this chapter

verifies operation of the major hardware components in the IR

prototype. While the MBM is not fully operational, IRTST

verifies that proper communications exists between the CPU

and the BMC. All other components operate as expected for

the set of capabilities exercised by IRTST.

77

IACRO-80 3.36 17-Mar-80 PAGE 1-1

.Z80
0000, ASEG

;TITLE: IR TEST - SYSTEM TEST FOR IR PROTOTYPE
;AUTHOR: CAPT R E REISHER
;DATE: 4 MAR 82
;SYSTEM: IFPDAS IR
;OPERATIONz THIS PROGRAM DEMONSTRATES OPERATION OF THE FOLLOWING

COMPONENTS OF THE IR PROTOTYPE:

COMPONENT S/U EXERCISE

CPU - PROGRAM EXECUTION
PROGRAM MEMORY - PROGRAM STORAGE
RAM - STACK, DATA BUFFER
TIMERS -FIXED INTERVAL INTERRUPT
INPUT -READ PORT B
OUTPUT - WRITE TO PORT A
A/D CONVERTER - SAMPLE SENSOR #7
MBM CONTROLLER - READ & WRITE FIFO

TRANSFER OF DATA BETWEEN THE BUBBLE MEMORY CONTROLLER
(DMC) AND THE MBM IS NOT EXERCISED BY THIS PROGRAM

;******N***CONSTANTS ********3*********3***

009B IER EQU OBBH ;1/0 PORT FOR INTERRUPT ENABLE REG
O0OA IERVAL EQU OAN ;ENABLE RSTA AND RSTC INTERRUPTS
0003 STEOUT EQU 03H ;STROBED OUTPUT MODE TO ACTIVE BUS
0000 DDIN EQU OOH ;INPUT DEFINITION FOR DDR
00FF DDOUT EQU 0FFH ;OUTPUT DEFINITION FOR DDR
0023 DDCTRL EOU 23H ;DIRECTION DEF FOR PORT C CONTROL
0010 TOMODE EOU 19H ;MODE FOR TIMER 0 - EVENT COUNTER,

;RD/WR ONE BYTE, PRESCALER =64
00A.D TIMODE EQU 6DH ;MODE FOR TIMER 1, SQUARE WAVE GEN

;RD/WR TWO BYTES, PRESCALER 2
0000 TOSCLO EQU OOH ;LO BYTE -- COUNT VALUE
OOAO TOSCLI EQU OAOH ;HI BYTE -- FOR 0
0001 T1SCLO EOU 01H ;LO BYTE -- COUNT VALUE
0000 TISCLI EQU CON 1NI BYTE -- FOR 1

PACE

Figure 11, IR Prototype Verificationi Program (page I of 7).

78

MACRO-80 3.36 17-Mar-80 PAGE 1-2

* NSC810 PORT ASSIGNMENTS **

0020 PORTA EOU 20H
0021 PORTB EOU 21H
0024 DORA EQU 24H
0025 DDRD EOU 25H
0026 DDRC EQU 26H
0027 MDRA EOU 27H
0030 TOLB EOU 30H
0031 TOHB EQU 31H
0032 TILB EOU 32H
0033 TlHB EOU 33H
0034 TOSTOP EQU 34H
0035 TOSTRT EO 35H
0036 TISTOP EOU 36H
0037 TISTRT EOU 37H
0038 TMRO EOU 38N
0039 TMR1 EOU 39H

;*** A/D CONVERTER SENSOR ADDRESSES **

0040 ADCO EOU 40H
;... AND OTHERS .,,

0047 ADC7 EOU 47H
;... AND OTHERS .. ,

004F ADCF EOU 4;H

MO** N1M IO PORT ASSIGNMENTS

0088 BM$DATA EOU 88H ;MBM DATA (I/O)
0089 BM$CMD EaU 89H ;MBM COMMAND (OUT ONLY)
0089 BM$STAT EOU 89H ;MDM STATUS (IN ONLY)

;*** REGISTER ADDRESS COUNTER (RAC) ASSIGNMENTS

0000 FIFO EOU OOH ;FIFO I/0 REGISTER

;*** MBM COMMAND CODES

0012 BM$RD EQU 12h ;READ BUBBLE DATA
0013 BMWR EQU 13H ;WRITE BUBBLE DATA

;****l**m**** END CONSTANTS **************l** *********** I*

PACE

Figure 11. IR Prototype Verification Program (page 2 of 7).

79

MACRO-80 3.36 17-Mar-80 PAGE 1-3

;*******fl**** VARIABLES ************************** * ** ***

ORG 2000H ;BEGINNING ADDRESS OF RAN

2000 DS 64 ,*** DEFINE SYSTEM ***
2040 STACK EQU $;** STACK ***

2040 SAVER- DS 1 ;ONE BYTE TEMPORARY SAVE AREA

ORG 3100H ;(ADDRESS WITHIN ANOTHER RAM)

0028 FIFOLN EOU 40D ;LENGTH OF FOLLOWING FIFO BUFFERS
3100 FIFOUTz DS 40D ;BMC FIFO OUTPUT BUFFER
3128 FIFOIN: DS 40D ;BMC FIFO INPUT BUFFER

;************ END VARIABLES ***************************** ****

ORG O000H
0000 C3 0100 JP START ;START AT BEGINNING ON SYSTEM RESET

ORG 002CH ;RSTC INTERRUPT ENTRY
002C C3 0300 JP ADCSHNDL ;A/D CONVERTER INTERRUPT

ORG 0034H ;RSTB INTERRUPT ENTRY
0034 76 HALT ;NOT YET SUPPORTED

ORG 0038H ;INTR INTERRUPT ENTRY
0038 76 HALT ;NOT YET SUPPORTED

ORG 003CH ;RSTA INTERRUPT ENTRY
003C C3 0200 jP TOINT$HNDL ;TIMER 0 INTERRUPT

ORG 0100H

0100 31 2040 START: LD SPSTACK ;INIT STACK PNTR

Figure 11. IR Prototype Verification Program (page 3 of 7).

80

MACRO-80 3.36 17-Nir-80 PACE 1-4

;*** SET UP NSC810 I/O PORTS ***

0103 3E FF LD AtDDOUT ;*** INIT ALL PORT A *
0105 D3 24 OUT (DDRA)jA ;I** BITS AS OUTPUT *1

0107 3E 00 LD AtDDIN ;*** INIT ALL PORT B **
0109 D3 25 OUT (DDRB),A ;I** BITS AS INPUT ***

010B 3E 23 LD ADDCTRL *** INIT DIRECTION OF
0105 03 26 OUT (DDRC),A ;*** CONTROL BITS ***

OOF 3E 03 LD ASTBOUT ;*** INIT PORT A FOR ***
0111 D3 27 OUT (MDRA)tA ;*** STROBED OUTPUT ***

;*** SET UP NSC810 TIMERS ***

0113 3E 19 LD AtTOMODE ;*** SET UP TIMER 0 AS **
0115 D3 38 OUT (TMRO)IA ;*** EVENT COUNTER *

0117 3E 00 LD ATOSCLO ;*** INIT **
0119 D3 30 OUT (TOLB),A *** TIMER **
011B 3E AO LD AITOSCLI ;*** 0 ***

OlD D3 31 OUT (TOHB),A ;*** COUNT ***

OliF 3E 6D LD ATIMODE ;*** SET UP TIMER I AS ***
0121 D3 39 OUT (TMR1),A ;*** SQUARE WAVE GEN ***

0123 3E 01 LD ApTISCLO ;*** INIT TIMER ***
0125 D3 32 OUT (T1LB)tA ; I** 1 COUNT ***

0127 03 35 OUT (TOSTRT),A ;*** START THE **
0129 D3 37 OUT (T1STRT),A ;*** COUNTERS ***

012B 09 30 IN A,(TOLB) ;I** INSURE TIMER 0 II*

012D DB 31 IN At(TOHB) ;*** INTERRUPTS ARE RESET ***
PAGE

Figure 11. IR Prototype Verification Program (page 4 of 7),

RACRO-80 3.36 17-Mar-80 PAGE 1-5

;*** SET UP INTERRUPT STRUCTURE ft*

012F 3E OA LD AIIERVAL ;ENABLE SYSTEM INTERUPTS
0131 E6 FD AND OFDH ;TURN OFF RSTC
0133 D3 BB OUT (IER),A ;SET INTERRUPT ENABLE REG
0135 ED 56 In I ;SET INTR FOR RSTX TYPE INTERRUPTS
0137 FB 1

;*ftf f * ft ft ft ft ftftt

;*** IR TEST LOOP ftt

0138 21 3100 LD HLPIFOUT ;SET PNTR TO FIFO OUTPUT BUFFER
0133 06 28 LD BFIFOLN ;INIT BUFFER LENGTH COUNTER

0130 DB 21 LOOP% IN At(PORTB) ;READ PORTB
013F 77 LD (HL)tA ;SAVE VALUE JUST READ
0140 D3 20 OUT (PORTA)IA ;WRITE VALUE
0142 23 INC HL ;INC BUFFER PNTR
0143 05 DEC B ;DEC BUFFER BYTE COUNT
0144 CD 0199 CALL WAIT

0147 D3 47 _JT (ADC7)IA ;START A/D CONVERSION
0149 3E OA AtIERVAL ;*** ENABLE RSTA & ***
014B 03 BB OUT (IER)jA ;*f RSTC INTERRUPTS ftt

014D CD 0199 CALL WAIT
0150 3A 2040 LD A,(SAVER) ;*ft SAVE VALUE fet
0153 77 LD (HL)tA ;ftt JUST READ ***
0154 03 20 OUT (PORTA),A ;WRITE VALUE
0156 23 INC HL ;INC BUFFER PNTR
0157 CD 0199 CALL WAIT
015A 10 El DJNZ LOOP ;DEC BUFFER BYTE COUNT AND

;LOOP UNTIL BUFFER FULL

015C 3E 55 LD A155H ;fff OUTPUT FIFO TEST *ft
015E D3 20 OUT (PORTA),A ;*ft STARTED INDICATOR **f

0160 3E 00 LD AFIFO ;ftt SET BMC PNTR *ft
0162 D3 89 OUT (BM$CMD)tA ;*f* TO FIFO ftt

Figure 11. IR Prototype Verification Program (page 5 of 7),

82

MACRO-80 3.36 17-Mar-80 PAGE 1-6

0164 06 28 LD BFIFOLN ;*** DUMP BUFFER ***
0166 21 3100 LD HLFIFOUT ;*** TO
0169 ED B3 OTIR ;*** BMC FIFO ,*,

016B CD 0199 CALL WAIT ;WAIT A WHILE
016E CD 0199 CALL WAIT
0171 CD 0199 CALL WAIT

0174 06 28 LD BFIFOLN ;*** FILL BUFFER ***
0176 21 3128 LD HLtFIFOIN ;*** FROM *
0179 ED B2 INIR ;*** BMC FIFO ***

0179 11 3100 LD DEFIFOUT ;*** INIT COMPARE ***
017E 21 3128 LD HLFIFOIN ;*** LOOP DRIVING ***
0181 01 0028 LD BCt40D ;*** PARAMETERS ***

0184 IA LD A,(DE) ;GET FIFO OUTPUT BUF VALUE
0185 ED Al CMPLP: CPI ;COMPARE OUTPUT TO INPUT BUFFER
0187 13 INC DE ;BUMP PNTR
0188 20 09 JR HZtERRFF ;ERROR - BUFFERS HOT THE SAME
OIBA EA 0185 JP PEtCMPLP ;LOOP UNTIL END OF BUFFERS

;BUFFERS COMPARED OK
018D 3E DO LD AtODOH ;*** OUTPUT SATISFACTORY h**
018F D3 20 OUT (PORTA)tA ;*** COMPLETION INDICATOR **
0191 F3 DI
0192 76 HALT

0193 3E FF ERRFF: LD AOFFH ;*** OUTPUT BAD COMPARISON ***
0195 D3 20 OUT (PORTA)tA ;*** INDICATOR
0197 F3 DI
0198 76 HALT

*** ** * ** * * * ****

;*** WAIT FOR AN INTERRUPT "N

0199 FS WAIT: PUSH AF
019A 76 HALT
0199 Fl POP AF
019C C9 RET

PAGE

Figure 11. IR Prototype Verification Program (page 6 of 7).

83

7 AD-Ails8 072 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO--ETC _FG 14/3 E
AN INFLIGHT RECORDER PROTOTYPE FOR THE INFLIGHT PHYSIOLOGICAL O--ETC(U)

_ FEB 82 R E MEISNER
U4CLASSIFIED AFIT/OCS/EE/82M-5 N

2.3ffffffffffff

EohEohEEEEEEEE
EEmhhmhEEEEmhE
EhEEEmhhohmhEE
EEEEEEmhEEEEEI

RACRO-80 3.36 17-Mar-80 PAGE 1-7

;N** TIMER 0 INTERRUPT HANDLER **

ORG 0200H
0200 TOINTSHNDL:
0200 F5 PUSH AF

0201 DB 30 IN A,(TOLB) ;* RESET TIMER 0 ***
0203 DB 31 IN At(TOHB) ;NNN INTERRUPT NNN

0205 FB El

0206 Fl POP AF
0207 ED 4D RETI

;NN* A/D CONVERTER INTERRUPT HANDLER ***

ORG 0300H
0300 ADCSHNDL:
0300 F5 PUSH AF

0301 DB 47 IN A,(ADC7) ;*N* SAVE CONVERTER NH
0303 32 2040 LD (SAVER),A ;*NN VALUE *NN

0306 3E OA LD AIERVAL ;NNN DISABLE *

0308 E6 FD AND OFDH ;NNN ONLY RSTC NNN

030A D3 BB OUT (IER),A ;NN* INTERRUPTS **N

030C FB EI

030D F1 POP AF
030E ED 4D RETI

END

Figure 11. IR Prototype Verification Program (page 7 of 7).

84

V Conclusions and Recommendations

With two exceptions, the IR prototype constructed in

this thesis conforms to the hardware architecture previously

defined in Figure 2. One exception is that testing of the

MBM peripheral is not complete. The other is that RAM is

increased to allow software experiments to vary MBM data

buffer sizes. In addition to wirewrapping a prototype,

thesis results include construction of several tools to

support system development.

Appendices to this thesis contain documentation and

user's manuals for IR prototype support tools. Tools that

can be found in the appendices are:

Appendix B - EEPROM Programmer,
Appendix C - MBM Interactive Development System, and
Appendix D - IR Debugging System.

The EEPROM programmer is used to dump software from floppy

discs to HNVM3008 EEPROM's. The MBM Interactive Development

System is primarily a tool for teaching new users

capabilities and limitations of the Intel 7110 MBM. The

capabilities taught are those pertinant to the IR.

Additionally, the development system can be used to

troubleshoot and verify MBM operation. The last support

tool, the IR Debugging System, is a hardware front panel for

the IR prototype. It provides a minimum level of software

debugging support when connected to the IR prototype.

85

Conclus ions

The scope of this thesis allowed design requirements to

be developed, and a prototype to be constructed. Time

constraints forced an end to this thesis before a definitive

analysis could show that the IR prototype adheres to the four

required characteristics outlined in Chapter II. The two

requirements for the IR to be solid-state and microprocessor

controlled are incorporated into the hardware architecture.

More work must be done before definitive statements can be

made about the unobstructive and battery operated

requirements.

While it is too early to say that the IR will be

unobstructive, its thickness should be smaller than the two

inches that pilots found restrictive in the IFPDAS I. This

estimate is based on the likely assumption that the IR will

consist of IC's housed on a printed circuit board. An upper

bound on the length and width of a flyable IR is the current

area of the wirewrapped prototype. This area, 13 x 4.5

inches, is projected to include the MBM interface but not the

MBM's themselves. Density of IC's in the flyable should be

greater than that of the wirewrapped prototype. An

additional factor that could reduce board area is the

possibility that some IC's can be eliminated once software is

developed for the IR. The upper bound just developed for the

IR does not include space for the MBM storage peripheral. A

discussion of MBM space requirements fo lows under

86

Recommendations. Estimates of the unobstructive property of

the new IR must wait for further system development.

Until software is running on the IR prototype, battery

operated requirements can only be rough estimates. One

important estimating factor is that power dissipation in CMOS

components varies with operating frequency. Even if the

operating frequency of each component could be projected,

NSC800 documentation does not contain the figures required to

accurately estimate power consumption. Another important

factor is that current draws vary within MBM's, depending on

I/O frequency and numbers of parallel operating bubbles.

Therefore, accurate estimates on battery requirements must

wait until the system can be exercised by software.

In addition to the statements made about required

characteristics, the following observations relate to desired

characteristics. There are 16 A/D converter channels

available which accept OV - 5V conditioned inputs. Output

from any channel to the CPU is available 100 microseconds

after conversion is started, allowing a maximum sampling

frequency of 10,000 per second. In addition to being able to

increase the sampling rate of sensors, other design

characteristics leave room for expansion. A discussion of

how each IR component can be expanded is found in the

component subsections of Chapter II. An evaluation of the

last desired characteristic of four hour operation depends on

a solution to battery operated requirements. Therefore, all

87

desirable characteristics with the exception of four hour

operation have been achieved in the IR prototype.

Rerommendat ions

As mentioned above, the IR prototype is not fully

operational. Until it is, unobstructive size and battery

operated requirements can not properly be evaluated.

Therefore, the first step should be to complete prototype

construction by debugging the MBM peripheral. The peripheral

has been wirewrapped as specified by the design in Chapter

III. Communications between the CPU and BMC has also been

verified. However, initial tests could not access the MBM

itself. Software to debug and ultimately drive the MBM

peripheral can be adapted from modules found in Appendix C.

Another high priority task should be to develop a

software prototype for the IR. Once software is developed,

hardware component requirements can be optimized. This

optimization should result in a reduction of the number of

IC's used in the flyable IR. Another reason for completing

software early in the next thesis cycle is that it will allow

the system requirements for battery operation and system bulk

to be evaluated. Then a descision can be made about

continued IR development.

An important point must be made with reference to the

MBM secondary storage peripheral. Continued development with

the current IM bit MBM's will pro -ily result in an IR that

is too bulky. However, Intel has announced that 4M bit

88

I,

bubbles will be available for general sampling during the

first half of 1983 (Ref 25). With the lead time for

development of systems in an academic environment, work

should not be discontinued to await release of the next

generation of bubbles. Instead, development should continue

along the lines set down in this thesis. That is, any

redesign of the MBM peripheral should remain modular so that

new bubbles can easily be interfaced once they become

available. Meanwhile, an IR can be developed with less than

a 1M byte capacity for reduced data acquisition tasks and to

prove the concept of the new generation IR.

As stated previously, the IR Debugging Tool provides

only minimum front panel support for software development.

A recommendation for improving the front panel is to add

hardware breakpoints. Currently, the only way to insure that

the machine halts at a point of interest is to single step to

that point. As programs get longer, this becomes

increasingly tedious. Besides, single stepping interferes

with a program's interaction with interrupts.

Another lesson learned during softwa:e exercising of the

prototype is that programs burned into EEPROM's are

cumbersome to debug. This results from the fact that changes

can not be made to software during testing. Instead the

EEPROM must be reprogrammed and the test restarted for each

bug found. Developing a capability to replace EEPROM's with

RAM during software development would cure this problem.

Then programs loaded into the RAM could be altered during

89

testing through use of the IR Debugging Tool's memory write

capability. Relying on the fact that HNVM3008's have an

industry standard pin-out should minimize disruption of IR

prototype hardware.

Currently, EEPROM's must be removed from the IR whenever

reprogramming is desired. Future designs should incorporate

methods for programming the EEPROM's while they remain in the

IR. However, doing so should not add hardware to the IR

itself. The benefit of programming the EEPROM's without

removing them from the IR is that the possibility for system

errors is reduced. Errors are reduced in two ways. One is

that the possibility of misplacing IC's is eliminated. The

other is that permanent mechanical contacts have less chances

of loosening to cause unpredictable results.

Now that the IR prototype is nearing completion,

consideration should be given to other components of the

IFPDAS. As development continues, the answers to three

general questions become important. How will users develop

software for the IR? What field processing capabilities does

SAM need? How will SAM get the data from the field into

their laboratory data base? Until the IR can be integrated

into the IFPDAS, its use is restricted to proving feasibility

of design.

90

Bibliography

1. Bell, Gordon C. and Allen Newell. Computer Structures:
Readingts and Examp les. New York: McGraw-Hill Book
Company, 1971.

2. BPK-72 Bubble Memry Prototye Kit Users Manual, Santa
Clara, CA: Intel Corp, 1981.

3. CMOS Databook. Santa Clara, CA: National Semiconductor
Crp, 1978.

4. ComrnenAA Data Caalg Santa Clara, CA: Intel Corp,
1980"._

5. Electrical Research Association. The Engineerinj 2.f
Microprocessor Systems. Oxford, England: Pergamon
Press Ltd, 1979.

6. Fullager, David. "CMOS Comes of Age," IEEE §aectrum,
17,:24-7 (December 1980).

7. F264 - 65.536xl Dyn ami c Serial Memory. Product
Specification. Mountain Vi.ew, CA: Fairchil7d Camera and
Instrument Corp, October 1980.

8. Hall, Capt. and Lt. Shackford. IFPDAS point of contact
at SAM (personal interview). Brooks AFB, TX, 5-6 May
1981.

9. Hall, Douglas V. Microprocessors and Digital Systems.
New York: McGraw-Hill Book Company, 1980.

10. Harris 'Digital Data Book, Volume 2. Melbourne, FL:
Haris Corp, 1981.

I1I. H ill1, Robert E. Aircrew Modularized Inflight Data
Acquisition System. MS Thesis. Wright-Patterson AFB,
Ohio: Air Force Institu~te of Technology, December 1978.

12. HMV 3008. 8K CMOS EEPROM. Product Description. New-
port Beach, CA: Hughes Solid State Products, March
1981.

13. IC Master 1981. Volume 2. Garden city, NY: U n ite d
Technical Publications, Inc, 1981.

14. IC Memories. San Jose, CA: Hitachi America Ltd, 1980.

91

15. Intel 7 2 2 0-Z_, Bubble Memory Controller. Product
Description. Santa Clara, CA: Intel Corp, 1981.

16. Jolda, Joseph G. and Stephen J Wanzek. Aircrew Inflight
Physiological Data Acquisition System II. MS Thesis.
Wright-Patterson AFB, Ohio: Air Force Institute of
Technology, December 1977.

17. Magnetic Bubble Storage Data Catalog. Santa Clara, CA:
Intel Corp, February 1981.

18. Mano, M Morris. Digital Logic and Computer Design.
Englewood Cliffs, NJ: Prentiss-Hall, Inc, 1979.

19. "Microcomputer Data Manual," Electronic Design, 29: 88-
99 (March 19, 1981).

20. "Microprocessor Data Manual," Electronic Design, 28:
107-208 (November 22, 1980).

21. Moore, Kenneth L. Aircrew Infli _ Physiological Data
Acquisition System. MS Thesis. Wright-Patterson AFB,
Ohio: Air Force Institute of Technology, June 1980.

22. MC146805E2. Product Specification. Austin, TX:
Motorola Semiconductor Products Inc, 1980.

23. Nassi, I. and B. Shneiderman. "Flowchart Techniques for
Structured Programming," ACM SIGPLAN Notices. 8: 12-26
(August 1973).

24. NSC800 Microprocessor Family Handbook. Santa Clara, CA:
National Semiconductor Corp, 1981.

25. Ramndanes, Carol. Marketing Representative, Non-
Volative Memory Division, Intel Corporation (personal
interview). Santa Clara, CA, 24 February 1982.

26. RCA COS/MOS Memories, Microprocessors. and Support
Systems. Somerville, NJ: RCA Corp, 1979.

27. Texas Instruments IC Applications Staff. Designing With
TTL Integrated Circuits, edited by Robert L Morris and
John R Miller. New York: McGraw-Hill Book Company,
1971 .

28. TTL Data Book (Second Edition). Dallas TX: Texas
Instruments Inc, 1976.

29. Twaddle, William. "Special Report: CMOS IC's", EDN. 26:
88-100 (June 24, 1981).

30. Zaks, Rodnay. Microprocessors, from Chips to Systems.
USA: Sybex Inc, 1980.

92

Appendix A

IR Prototype Schematic

This appendix contains the schematic diagram of the IR

prototype. Instead of using a one page foldout, the

schematic is broken into logical pieces and distributed over

five pages. To combine the pages, lines ending at the right-

hand margin of one page are continued at the left margin of

the next page.

93

-AL .5qR

* U4

Fiur 12. -,I PrINpDchmtc(ag o)

94ap

ADOM

~ZAM

Figue 12 IR rotoypeScheatic(pag 2 o 5)

95

44

Figure 12. IR Prototype Schematic (page 3 of 5).

96

CLXR
C.L K z

Resa.

rwur

f.7;-

Figure 1.2. IN~PooyeShmtc(ae4o)

CE7

liv - :=
U--

AO j Mft- '

98.

Appendix B

EEPROM Programmer

Cant entis

I. Introduction.....................100

II. Schematic Diagram...................101

III. Software.......................108

IV. User's Manual.....................147

System Start-up....................148
Commands.......................148

ERASE.......................149
PROGRAM.....................149
VERIFY......................151
DUMP.......................153

Errors.........................154

99

EEPROM Programmer

I. Introduction

This Appendix describes and documents operation of the

EEPROM Programmer designed to support Hughes Solid-state

Products HNVM 3008 EEPROM's. Documentation consists of a

schematic diagram and an associated software listing.

Following the software listing is a user's manual which

describes the Programmer's capabilities and summarizes its

operating procedures. Another important source of informa-

tion, the HNVM 3008 data sheet, is located in Appendix E.

The EEPROM Programmer described in this document is a

flexible tool for supporting HNVM 3008 EEPROM's. This

flexibility results from two design considerations. One is

that the hardware is based on the S-100 bus. Another is that

software runs under control of the Cromemco Disk Operating

System (CDOS) and consequently the Control Program for

Microprocessors (CPM) Operating System. Further explanations

of these design decisions are contained in the following

sections of this document.

100

II. Schematic Diagram

The hardware used to implement the Programmer is

illustrated in the schematic diagram of Figure 12. To

facilitate understanding of the schematic, Table XI lists the

functions of the IC's used to construct the Programmer. More

detailed information on individual IC's is available from The

TTL Data Book and The Intel Component Data Catalog (Refs 11;

4).

The Programmer is wirewrapped on a Cromemco Z-2D

prototyping card, and therefore, can be easily transported to

any S-100 based system. Table XII illustrates which S-100

pins are used by the Programmer. Since the interface to the

S-100 bus is fully buffered, each line in Table XII presents

only a single TTL load to the bus.

Another aid to transportability is the onboard switch

selection of the five most significant bits of the Programmer

port addresses. This allows Programmer hardware addresses to

be chosen which do not interfere with the permanent I/0

addresses of the host computer. The EEPROM Programmer

addresses are selected by opening and closing appropriate

switches. Closed switches indicate zero bit settings, and

open switches indicate ones. The most significant bit of the

address switches is plainly marked on the wire-wrap card.

Beware that changes to these address switches require that

corresponding changes be made to Programmer software.

101

TABLE X

EEPROM Programmer Selectable Ports

Port Address Function

BBBB BOO EEPROM Data Bus

BBBB B001 EEPROM Address LSB(yte)

BBBB B010 EEPROM Address MSB(yte)

BBBB B011 I/O Command/Status

BBBB BlOO EEPROM Control Bus

Table X lists the EEPROM Programmer ports which are

affected by hardware address settings. The three least

significant bits, denoted by B's in Table X, are switch

selectable, allowing 32 choices for port addresses. One

possible selection is 00110, yielding software addresses 30H

through 34H. Switch settings to coordinate these addresses

with the hardware are - from the most significant bit -

closed, closed, open, open, and closed.

The only other requirement for EEPROM Programmer

operation is the need for an external 20V power supply.

This power source is regulated on the Programmer card to

provide either 5V or 17V to the positive supply terminal of

the EEPROM. Switching between the two volatges is governed by

software.

102

An important note with reference to the HNVM 3008 is

that proper programming depends on a continuous voltage to

the positive supply pin of the EEPROM. Output from the

regulator which supplies EEPROM power must not go to ground

during voltage transitions between 5V and 17V. The LM317 and

its associated circuitry provides these continuous power

transistions. Consequently, voltage changes from 5V to 17V

and from 17V to 5V, produce output waveforms that are step

functions.

103

TABLE XI

EEPROM Programmer IC Listing

Device Functional Schematic
Type Designation Reference

74365 Rex Bus Drivers UI,U2

8216 4-bit Bidirectional
Bus Driver U3,U4

7404 Hex Inverters U5

74156 3-to-8 Line Decoder U6

7485 4-bit Magnitude Comparator U7,U8

7400 Quad 2-input NAND Gates U12

8255 Programmable Peripheral
Interface UlI1

8212 8-bit 1/0 Port U13

104

TABLE XII

S-100 to EEPROM Programmer Interface Definition

S-100 Signal S-100 Signal
Pin Function Pin Function

29 Addr 5 75 RESET

30 Addr 4 79 Addr 0

31 Addr 3 80 Addr 1

35 Data Out 1 81 Addr 2

36 Data Out 0 82 Addr 6

38 Data Out 4 83 Addr 7

39 Data Out 5 88 Data Out 2

40 Data Out 6 89 Data Out 3

41 Data In 2 90 Data Out 7

42 Data In 3 91 Data In 4

43 Data In 7 92 Data In 5

45 OUT 93 Data In 6

46 INP 94 Data In 1

50 GND 95 Data In 0

51 +8V

105

!g ION SN

30).- _z

Z _

442. 71 ll iA

/J/

I-4; 00 AIItV ~
aur

sl

-5C--

p0)- 4

~ >-07 52=

Figure 13. EEPROM Programmer Schematic (page 1 of 2).

106

.2.7

074 -j'

40

p,,q- Iva-

".A,~ -r.,

IIr

yjO

'rr

; AW 00

Figure 13. EEPROM Programmer Schematic (page 2 of 2).

107

III. Software

Figure 15 is a software listing of the program used to

drive the EEPROM Programmer hardware. Its basic flow is

outlined in the Nassi-Shneiderman chart (Ref 23) of Figure

14. The software was written in Z-80 assembler language with

system calls to CDOS for I/O support. Since system calls are

restricted to those between 1 and 27, the software is

transportable to CPM based systems without modification.

This transportability results from identical execution of the

operating systems for calls in the range of I to 27.

108

INITIALIZATION

GET USER COMMAND

WHILE COMMAND NOT EXIT DO

COMMAND

ERASE PROGRAM VERIFY DUMP

ERA$IC CRE8$FCB CRE8$FCB CRE8$FCB

OPEN FILE OPEN FILE CREATE FILE

WHILE NOT WHILE NOT RD$IC

EOF DO EOF DO
WR$FIL

ERA$IC RD$FIL
DO UNTIL

RD$FIL VER$IC LAST IC

PROG$IC CLOSE FILE CLOSE FILE

VER$IC

CLOSE FILE

Figure 14. EEPROM Programmer Flowchart

109

MACRO-80 3.36 17-Mar-80 PAGE 1-1

.Z80

.COMMENT Z
;AUTHOR: CAPT R E MEISNER
;DATE: 25 AUG 81
;SYSTEM: CROMEMCO Z2D (4 MHZ) / CDOS 2.36
;DESCRIPTION: THIS ROUTINE SUPPORTS HUGHES HNVM 3008 EEPROM'S BY

PROVIDING THE FOLLOWING OPERATIONS:

ERASE - ERASE AN ICt
PROGRAM DUMP A FILE TO IC(S),
VERIFY " INSURE FILE AND IC(S) DATA MATCH, AND

DUMP - DUMP IC(S) TO A FILE.
;OPERATIONz

THIS PROGRAM IS EXECUTED BY RUNNING "EEPROM" FROM THE CDOS
MACHINE LEVEL. ONCE INITIATED, EEPROM WILL GUIDE THE USER
THROUGH OPERATION OF THE PROGRAM WITH APPROPRIATE CONSOLE

DIRECTIVES. WHEN DONE, THE USER CAN EXIT GRACEFULLY BACK
TO THE CDOS LEVEL.

,* EEPROM PORT REQUIREMENTS **

PORT ADDRESSES ARE SWITCH SELECTABLE BY SETTING THE HIGH ORDER
5 BITS OF THE PORT ADDRESS ON THE PROGRAMMER BOARD. THE LOWER
3 BITS HAVE THE FOLLOWING DEFINITIONSt

0 - EEPROM DATA BUS

I - EEPROM ADDRESS LSB(YTE)
2 EEPROM ADDRESS MSB(YTE)

3 - 8255 COMMAND/STATUS PORT
4 - EEPROM CONTROL BUS

***** EEPROM CONTROL LINE DEFINITIONS *****

D7 - N/A
D6 - N/A
D5 - N/A
D4 - N/A
D3 - VDD CONTROL (0 = 17VI I 5V)
D2 - CE (ACTIVE LOW)
DI - OE (ACTIVE LOW)
DO - CS (ACTIVE HIGH)

z

PACE

Figure 15. EEPROM Programmer Software (page I of 37).

110

MACRO-80 3.36 17-Mar-80 PACE 1-2

.COMMENT Z

-*-* NOTE TO MAINTENANCE PROGRAMMERS '-m-*

SEVERAL SUBROUTINES IN THIS PROGRAM CONTAIN TIME SENSITIVE
INSTRUCTION SEQUENCES. CONSULT THE HUGHES SOLID STATE PRODUCTS
HNVM 3008 DATA SHEET BEFORE MAKING CHANGES. THE CRITICAL
SUBROUTINES ARE:

ERAIC, ICRDt AND PROG$IC.

OTHER SUBROUTINES CAN BE FREELY BE CHANGED WITHOUT AFFECTING
TIMING REQUIREMENTS,

ALSOt THROUGHOUT THIS PROGRAM THE ASSUMPTION IS MADE THAT THE

EEPROM SUPPLY VOLTAGE IS NORMALLY SET AT 5V. IT IS ONLY
INCREASED TO 17V WHEN REQUIRED FOR ERASING OR PROGRAMMING.

0000' ASEG
ORG 0100H

0100 ENTRY$PT:
0100 ED 73 014A LD (OLDSP)tSP ;SAVE OLD STACK POINTER
0104 31 014A LD SPSTACI ;INITIALIZE NEW STACK
0107 C3 0D60 JP START
010A DS 64 ;64 BYTE STACK

014A STACK EOU $;TOP OF STACK

014A 0000 OLDSP: DW 0 ;OLD STACK POINTER SAVE AREA
PAGE

Figure 15. EEPRON Programmer Software (page 2 of 37).

III

MACRO-80 3.36 17-Mar-80 PAGE 1-3

;*****H********* CONSTANTS ****************************

FFFF NEGI EQU -1
0000 ZERO EQU 0
0001 ONE EOU 1
0010 MAXERR EOU 16 MAXIMUM NUMBER OF VERIFY ***

ERRORS THAT WILL BE DISPLAYED *
0080 RECSIZ EQU 128 ;RECORD SIZE = DISK SECTOR SIZE
0008 BF EQU 8 ;*** BLOCKING FACTOR FOR 1K ***

;*** (BF * RECSIZ : 1024) ***

;ASCII CHARACTERS

0020 BLANK EOU
003A COLON EQU
002E PERIOD EQU '.'

002F SLASH EQU '/'

;CDOS SYSTEM CALL PARAMETERS

0005 CDOS EOU O005H ;CDOS ENTRY POINT
0001 RDCHR EQU I ;READ A CHARACTER FROM CONSOLE
0002 PRTCHR EQU 2 ;PRINT A CHARACTER ON THE CONSOE
0009 PRTLN EQU 9 ;PRINT BUFFER LINE ON CONSOLE
OOOA RDLN EOU 10 OINPUT BUFFER LINE FROM CONSOLE
0024 PRTEND EQU '$;END PRINT BUFFER
O00F OPNFL EQU 15 ;OPEN DISK FILE
0010 CLSFL EOU 16 ;CLOSE DISK FILE
0014 RDFIL EOU 20 ;READ A DISK SECTOR
0015 WRFIL EOU 21 ;WRITE A DISK SECTOR
0016 CR8FL EOU 22 ;CREATE A DISK FILE
0019 CURDK EQU 25 ;GET CURRENT DISK INDICATOR
005C FCB EQU 05CH ;BEGINNING OF FILE CONTROL BLOCK
0080 CDOS$DB EQU 080H ;DEFAULT DISK BUFFER ADDRESS

;***** FILE CONTROL BLOCK DESCRIPTION ********

005C FCBDK EQU FCB+O ;DISK DESCRIPTOR *
005D FCBFN EQU FCB+l ;FILE NAME *
0065 FCBFT EOU FCB+9 ;FILE TYPE *
0068 FCBEX EOU FCB+12 ;FILE EXTENT *
006B FCBRC EOU FCB+15 ;RECORD COUNT *
006C FCOMP EOU FCB+16 ;CLUSTER ALLOCATION MAP *
007C FCBNR EQU FCB+32 ;NEXT RECORD *

;*****II***********III*************I

Fiqure 15. EEPROM Proqramuer Software (page 3 of 37).

112

MACRO-80 3.36 17-Mar-80 PAGE 1-4

;CARRAIGE CONTROL

OOOD CR EQU OODH ;ASCII CARRAIGE RETURN

OOOA LF EOU OOAH ;ASCII LINE FEED

;IO PORT ADDRESSES

0001 CIO EaU 001N ;CONSOLE I/O PORT
0020 PROMA EOU 020H ;EEPRON DATA PORT
0021 PROMB EOU 021H ;EEPROM ADDRESS LSB
0022 PROMC EQU 022H ;EEPRON ADDRESS MSB
0023 PCNTRL EOU 023H ;PERIPHERAL CONTROLLER PORT FOR PORTS A, B, C
0024 PROND EOU 024H ;EEPROM CONTROL PORT

;CHANNEL COMMAND WORDS FOR PROGRAMMING THE PERIPHERAL CONTROLLER

0080 CCW1 EOU 10000000B ;PORTS At B, C LATCHED OUTPUT
0090 CCW2 EOU 1O010000B ;*** PORTS B, C LATCHED OUTPUT ***

*** PORT A INPUT I*

;EEPROM CONTROL LINES AS DEFINED FOR PORT D

0008 V$5 EOU 008H ;** SUPPLY ** ,, 5V **
0OF7 V$17 EOU OFFH-V$5 ;** VOLTAGE 1* i* I7V **
0004 D$CE EOU 004H ;*** CHIP *** ,1 DISABLE **

OOFB ESCE EOU OFFH-D$CE ;* ENABLE *** 1* ENABLE *
0002 D$OE EOU 002H ;** OUTPUT * ** DISABLE **
OOFD E$OE EU OFFH-D$OE ;** ENABLE ** ** ENABLE *1
0001 E$CS EQU O01H ;t** CHIP *** ** ENABLE *1
OOFE D$CS EOU OFFH-E$CS ;,*, SELECT *** ** DISABLE *

;CONSOLE MESSAGES

014C OD OA OA MSG1: DB CRtLFtLF
014F 20 20 20 20 DB WHAT OPERATION DO YOU WISH TO PERFORM?',CRILF
017B 45 28 52 29 DB 'E(R)ASEt (P)ROGRAM, (V)ERIFY, (D)UMPt OR E(X)IT'
O1AA OD OA 24 DB CRtLFtPRTEND
OIAD OD OA MSG2: D. CRpLF
OlAF 46 49 4C 45 DB 'FILENAME? ',PRTEND
O1BB OD OA OA MSG3: DB CRLFLF
OBE 50 4C 45 41 DB 'PLEASE ANSWER THE FOLLOWING QUESTIONS IN HEXIDECIMAL'
01F2 OD OA 4E 4F DB CRLFt'NOTE: THE FIRST 2 ADDRESSES MUST BE ON
021C 4B 49 4C 4F DB iCILOBYTE BOUNDARIES'.CRLFpLF
0232 53 54 41 52 DB 'STARTING ADDRESS OF PROGRAM ON FILE? ',PRTEND

Figure 15. EEPROM Programser Software (page 4 of 37),

113

MACRO-80 3.36 17-Mar-80 PAGE 1-6

0259 OD OA 46 49 MSG4: DB CRtLFt'FIRST ADDRESS TO BE PROGRAMMED/VERIFIED?
0285 24 DB PRTEND
0286 OP OA 4C 41 MSG5: D9 CRLFI'LAST ADDRESS TO BE PROGRAMMED/VERIFIED?
0281 24 DB PRTEND
0292 OD OA OA MSG6: DB CRLFLF
02B5 52 45 4D 4F DB 'REMOVE OLD IC / INSERT NEXT IC',CRLFLF
02D6 50 52 45 53 DB 'PRESS ANY KEY WHEN READY'pCRLFLFtPRTEND
02F2 OD OA 44 4F MSG7: DB CRLFp'DO YOU HAVE MORE EEPROMS? (Y/N)'PRTEND
0314 OD OA 56 45 MSG8: D CRtLF,'VERIFICATION COMPLETED WITH NO ERRORS'tPRTEND
033C OD OA MSGERA: DB CRLF
033E 45 52 41 53 DB 'ERASING',PRTEND
0346 2D 50 52 4F MSGPRG: DO '-PROGRAMMING'IPRTEND
0353 2D 56 45 52 MSGVER: DB '-VERIFYING',CRtLFPRTEND
0360 OD OA 2A 2A ERRI: DB CRLF,'*** ERROR *** FILE HOT FOUND'ICRILFIPRTEND
0381 OD OA 2A 2A ERR2: DB CRtLF,'*** ERROR 0* PROM DID NOT ERASE'tCRLFtPRTEND
03A6 OD OA 2A 2A ERR3: DB CRLF,-'** ERROR 0' FILE COULD NOT BE CREATED'
03CF OD OA 24 DO CRtLFtPRTEND
03D2 2A 2A 2A 20 ERR4$O: DB '* VERIFY ERROR - PROM FILE/PROM',CRLF
03F8 2A 2A 2A 20 DB '0* ADDRESS VALUES'CRLFPRTEND
041E 2A 2A 2A 20 ERR4$1: PB 'DO* 'PRTEND
0434 20 2F 20 24 ERR4$2: Dl ' / ',PRTEND
0438 OD OA 2A 2A ERRS: DB CRtLFt'*** ERROR *0 DISK RECORD COULD NOT BE WRITTEN'
0468 OD OA 24 DB CRtLFtPRTEND
0468 OD OA 2A 2A ERR6: DB CRILF,'*** ERROR *o RELATIVE MAGNITUDE OF ADDRESSES
0499 49 53 20 49 DB 'IS INVALID',CRLFPRTEND
04A& OD OA 2A 2A ERR7: DB CRLF,'*** ERROR *0 INVALID ADDRESS'-CRLFPRTEHD
04CA OP OA 2A 2A ERRS: DB CRLFt'*** ERROR *0 DISK FILE READ ERROR OR
04F2 55 4E 45 58 DB 'UNEXPECTED EOF'CRLFPRTEND

;***0*0**** END CONSTANTS ****o*o**o* o**o***o

Figure 15. EEPROM Prograsmer Software (page 5 of 37).

114

MACRO-80 3.36 17-Mar-80 PACE 1-10

.****~****** VARIABLES *******************

0503 NXTADD: DS 2 ;NEXT EEPROM ADDR TO BE PROGRAMMED
0505 FLSTAD: DS 2 ;STARTING ADDR OF PROGRAM ON THE FILE
0507 FSTADD: DS 2 ;FIRST EEPRON ADDR TO BE PROGRAMMED
0509 LSTADD: DS 2 ;LAST EEPROM ADDR TO BE PROGRAMMED
0509 ERRADD: DS 2 ;SAVE AREA FOR AN ERROR ADDR
050D 01 ERRCNT: DP I ;TEMPORARY ERROR COUNTER
050E 50 CONBtJF: DB 80 ;BUFFER LENGTH
05OF 00 DB 0 ;NUMBER OF CHARACTERS READ
0510 DS 80 ;CONSOLE INPUT BUFFER
0560 DSKBUF: DS BF*RECSIZ ;DISK BUFFER - HOLDS 'BF' RECORDS
0960 PROMBF: DS 1024 ;EEPROM BUFFER - HOLDS EEPRON IMAGE

;*******I*** END VARIABLES **f***********#**i*

PAGE

Figure 15. EEPROI Programmr Software (page 6 of 37).

115 *1

MACRO-80 3.36 17-Mar-0 PAGE 1-11

0D60 3E OE START: LD AV$5+D$CE+D$OE ;*** DISABLE EEPROM **

0D62 D3 24 OUT (PROWD),A ;** CONTROL LINES **

0D64 GET$OPR:
0D64 OE 09 LD CtPRTLN

0D66 11 014C LD DEtISGI ;* PROMPT USER FOR OPERATION *

OD69 CD 0005 CALL CDOS

OD6C OE 01 LD CRDCHR ;*** GET USER ***

0168 CD 0005 CALL CDOS ;*** RESPONSE **

0D71 FE 52 CP 'R'
0D73 CA 0D90 JP ZE$OPR ;GO ERASE

0D76 FE 50 CP P'

0D78 CA ODA3 JP ZP$OPR ;GO PROGRAM

0D7B FE 56 CP
OD7D CA 0E18 JP ZV$OPR ;GO VERIFY

0D80 FE 44 CP 'D'
0D82 CA OE8E JP ZtD$OPR ;GO DUMP

0185 FE 58 CP IX. ;EXIT?

0D87 20 DO JR NZtGET$OPR ;NO, INVALID INPUT

0D89 ED 7V 014A LD SPt(OLDSP) ;YES, RESTORE STACK

OD8D C3 0000 JP 0 , RETURN TO CDOS

;******* ERASE IC ,

0D90 OE 09 E$OPR: LD CPRTLN ;** INSTRUCT USER ***

0D92 11 02B2 LD DEMSG6 ;**, TO TURN ON f*

0195 CD 0005 CALL CDOS ;**. PROGRAMMER **

0D98 OE 01 LD CRDCHR ;**** WAIT UNTIL ***

OD9A CD 0005 CALL CDOS ;**** DONE **

OD9D CD 1131 CALL ERASIC

ODAO C3 0D60 JP START ;ALLOW USER ANOTHER OPERATION
PAGE

Figure 15. EEPROM Programmer Software (page 7 of 37).

116

MiACRO-80 3.36 17-Mar-80 PAGE 1-12

******* ERASE, PROGRAM, & VERIFY IC *************************

ODA3 CD OFOI P$OPR- CALL CRES$FCB

ODA6 OE OF LD COPAFL

ODA8 11 00SC LD DEFCB ;* OPEN DISK FILE *

ODAB CD 0005 CALL CDOS

ODAE FE FF CP NEGI ;WAS OPEN SUCCESSFUL?

ODBO C2 ODBE JP NZtP$C1 ;YES

00B3 OE 09 LD CtPRTLN ;NO, * ******

OD5 11 0360 LD DEERRI * PRINT ERROR *

OD88 CD 0005 CALL CDOS * * * * * * *

ODBB C3 0D60 JP START ;ALLOW USER ANOTHER TRY

ODDE CD OF6E P$CI: CALL SETSADDR
ODC1 FE FF CP NEGI ;ADDR ENTRY ERROR?

ODC3 CA OEOD JP ZP$DH ;YES, ALLOW USER ANOTHER TRY

ODC6 CD 1OD CALL POS$FIL
ODC9 FE FF CP NEG1 ;FILE POSITIONING ERROR?

ODCB 28 40 JR ZtP$DN ;YES, ALLOW USER ANOTHER TRY

;,*, LOOP UNTIL ALL IC'S ARE PROGRAMMED ***

ODCD CD IOFF P$NI: CALL RD$FIL
ODDO FE 00 CP ZERO ;WERE ANY RECORDS READ?.

ODD2 20 31 JR NZtPSE8 ;NO, MUST BE READ ERROR

ODD4 OE 09 LD CPRTLN ;*** INSTRUCT USER ***

0D6 11 0282 LD DEMSG6 ;*** TO TURN ON ***

ODD9 CD 0005 CALL COOS ;*** PROGRAMMER ***

ODDC OE 01 LD CRDCHR ;**** WAIT UNTIL ****

ODDE CD 0005 CALL COOS ;**** DONE *

ODEI CD 1131 CALL FRA$IC

ODE4 FE 00 CP ZERO ;WAS ERASE SUCCESSFUL?

ODE6 20 25 JR NZP$DN ;NOt GO CLOSE FILE AND GET OUT

ODE8 CD 1184 P$C2z CALL PROG$IC

ODE CD 120F CALL VER$IC
ODEE FE FF CP NEGI ;WERE THERE PROGRAMMING ERRORS?

ODFO 28 13 JR ZtPSDN ;YES, GO CLOSE FILE AND GET OUT

Figure 15. EEPROM Programmer Software (page 8 of 37).

117

MACRO-80 3.36 17-Mar-80 PAGE 1-13

ODF2 ED 4B 0503 LD BC,(NXTADD) ;**u** * I i
ODF6 51 LD DC ;* LOAD DE WITH NXTADD *
ODF7 58 LD EtB
ODF8 ED 48 0509 LD BC,(LSTADD) ;* * * * # ,
ODFC 61 LD HtC ;* LOAD HL WITH LSTADD *
ODFD 68 LD LB * ** * ** * * , *
ODFE A7 AND A ;*** COMPUTE ***
ODFF ED 52 SDC HLtDE ;*** LSTADD - NXTADD ***
OEO1 38 OA JR CtP$DN ;(0 IMPLIES DONE
OE03 18 C8 JR P$NI ;)=0 IMPLIES NOT DONE

;*** END LOOP ***

OE05 OE 09 P$E8: LD CtPRTLN
OE07 11 04CA LD DEpERR8 ;* PRINT DISK READ ERROR #
OEOA CD 0005 CALL CDOS

OEOD OE 1O P$DN: LD CtCLSFL
OEOF 11 005C LD DEFCB ;* CLOSE DISK FILE *
0E12 CD 0005 CALL CDOS * * * * * * * *
OEIS C3 0D60 JP START ;ALLOW USER ANOTHER OPERATION

PAGE

Figure 15. EEPROM Programmer Software (page 9 of 37).

118

MACRO-80 3.36 17-Mar-80 PAGE 1-14

;******* VERIFY IC iiii**,**************illiii****************

OE18 CD OFOI V$OPRz CALL CRE8SFCB

OEIB OE OF LD CtOPNFL
OE1D 11 005C LD DEtFCB ;* OPEN DISK FILE '
OE20 CD 0005 CALL CDOS * * * * * * *

0E23 FE FF CP NEGI ;WAS OPEN SUCCESSFUL?
0E25 20 OB JR NZVSCI ;YES
0E27 OE 09 LD CPRTLN ;Not *
0E29 11 0360 LD DEtERRI * PRINT ERROR *
OE2C CD 0005 CALL CDOS * * * * * * *
OE2F C3 0D60 JP START ;ALLOW USER ANOTHER TRY

0E32 CD OF6E V$Cl CALL SET$ADDR
0E35 FE FF CP NEGI ;ADDR ENTRY ERROR?
0E37 CA 0E83 JP ZV$DN ;YESt ALLOW USER ANOTHER TRY

OE3A CD IOBD CALL POS$FIL
OE3D FE FF CP NEG1 ;FILE POSITIONING ERROR?
OE3F 28 42 JR ZtV$DN ;YESt ALLOW USER ANOTHER TRY

;*** LOOP UNTIL ALL IC'S ARE VERIFIED ***

OE41 CD 1OFF V$NI: CALL RD$FIL
0E44 FE 00 CP ZERO ;WERE ANY RECORDS READ?
0E46 20 33 JR NZV$E8 ;NO, MUST BE DISK READ ERROR

0E48 OE 09 LD CPRTLN ;*** INSTRUCT USER **
OE4A 11 02B2 LD DEtSG6 ;*** TO TURN ON **
OE4D CD 0005 CALL CDOS ;*** PROGRAMMER **

OE50 OE 0 LD C)RDCHR ;**** WAIT UNTIL ****
0E52 CD 0005 CALL CDOS ;** DONE **

0E55 OE 02 LD CPRTCHR
0E57 IE OD LD ECR ;* MOVE CURSOR *
0E59 CD 0005 CALL CDOS ;* TO NEXT *
OESC IE OA LD ELF ;* LINE *
OE5E CD 0005 CALL CDOS

DE61 CD 120F CALL VER$IC
0E64 FE FF CP NEGI ;WERE THERE PROGRAMMING ERRORS?
0E66 28 IB JR ZV$DN ;YESt GO CLOSE FILE AND GET OUT

Figure 15. EEPRON Programmer Software (page 10 of 37).

119

MACRO-80 3.36 17-Mar-80 PAGE 1-15

0E68 ED 4B 0503 LD BC (NXTADD) ;, * I

OE6c 51 LD DtC ;I LOAD DE WITH NXTADD *

OE6D 58 LD EpB
OE6E ED 4B 0509 LD BC,(LSTADD) *
0E72 61 LD HpC ;* LOAD HL WITH LSTADD *

0E73 68 LD LB * * * * * * * * * *

0E74 A7 AND A ;*** COMPUTE *

0E75 ED 52 SBC HLDE ;*** LSTADD - NXTADD

0E77 38 OA JR CVSDN ;(0 IMPLIES DONE

0E79 18 C6 JR V$NI ;):0 IMPLIES NOT DONE

i*** END LOOP ***

OE7B OE 09 V$E8% LD CPRTLN
OE7D 11 04CA LD DEERR8 ;* PRINT DISK READ ERROR *

OE80 CD 0005 CALL CDOS

0E83 OE I0 V$DN: LD CtCLSFL
0E85 11 005C LD DEFCB ;* CLOSE DISK FILE *

0E88 CDO 0005 CALL CDOS * * * * * * *

OE8B C3 0D60 JP START ;ALLOW USER ANOTHER OPERATION
PAGE

Figure 15. EEPROM Programmer Software (page 11 of 37).

120

MACRO-80 3.36 17-Mar-80 PACE 1-16

;******* DUMP IC *******f***~***.***~***

OEDE CD OFOI D$OPR: CALL CRED$FCB

0E91 OE 16 LD CCRFL
0E93 11 005C LD DEFCB ;w CREATE A DISK FILE *
0E96 CD 0005 CALL CDOS * * * * * * * , *

0E99 FE FF CP NECI ;WAS CREATE SUCCESSFUL?
OE9D 20 OB JR NZDSRA ;YES
OE9D OE 09 LD CPRTLN ;NO *
OE9F 11 03A6 LD DEtERR3 * PRINT ERROR *
OEA2 CD 0005 CALL CDOS * * * * * * *
OEA5 C3 0D60 JP START ;ALLOW USER ANOTHER TRY

;*** LOOP UNTIL ALL IC'S ARE DUMPED ***

OEA8 OE 09 D$RA: LD CPRTLN ;*** INSTRUCT USER ***
OEAA 11 02B2 LD DEtMSG6 ;*** TO TURN ON ***
OEAD CD 0005 CALL CDOS ;*** PROGRAMMER ***

OEBO OE 01 LD CRDCHR ;*** WAIT UNTIL ***
OEB2 CD 0005 CALL CDOS ;*** DONE ***

OEB5 CD 1182 CALL ICSRD

OEB8 3E 08 LD AtBF ;INIT * LOOP COUNTER
OEBA 21 0960 LD HLPROMBF * PROMBF PNTR

;*** LOOP UNTIL PROMBF IS WRITTEN ***

OEBD 11 0080 D$WA: LD DECDOSSD8 ;SET * CDOS DISK BUFFER PNTR
OECO 01 0080 LD BCRECSIZ * BLOCK MOVE COUNTER
OEC3 ED BO LDIR

OEC5 F5 PUSH AF ;SAVE LOOP COUNTER
OEC6 OE 15 LD CjWRFIL
OEC8 11 005C LD DEFCB ;* WRITE A DISK RECORD *
OECB CD 0005 CALL CDOS
OECE FE 00 CP ZERO ;WRITE COMPLETED OK?
OEDO 20 1D JR NZtDSERR5 ;NO
OED2 Fl POP AF ;RESTORE LOOP COUNTER
OED3 3D DEC A ;END OF LOOP?
OED4 20 E7 JR NZpDSWA ;NO, WRITE ANOTHER RECORD

;*** END INNER LOOP **

Figure 15. EEPROM Programmer Software (page 12 of 37).

121

MACRO-80 3.36 17-Mar-80 PAGE 1-17

OED6 OE 09 DSC3. LD CPRTLN
OED8 11 02F2 LD DEtMSG7 ;* ASK FOR ANOTHER EEPROM '

OEDB CD 0005 CALL CDOS

OEDE OE 01 LD CRDCHR ;*** AWAIT ***

OEEO CD 0005 CALL CDOS ;*** RESPONSE? ***

OEE3 FE 59 CP ly' ;MORE EEPROM'S?
OEE5 28 Cl JR ZD$RA ;YES
OEE7 FE 4E CP 'N' ;INVALID INPUT?
OEE9 20 EB JR NZD$C3 ;YES
OEEB 18 09 JR D$DN ;NO, MUST BE DONE

;*** END OUTER LOOP ***

OEED Fl D$ERR5: POP AF ;CLEAR GARBAGE OFF STACK

OEEE OE 09 LD CtPRTLN * * * * * * * * * *

OEFO 11 0438 LD DE,ERR5 ;* PRINT WRITE ERROR

OEF3 CD 0005 CALL CDOS

OEF6 OE 1O D$DNz LD CCLSFL
0EF8 11 005C LD DEtFCB ;* CLOSE DISK FILE

OEF9 CD 0005 CALL CDOS * * * * * * * * *

OEFE C3 0D60 JP START ;ALLOW USER ANOTHER OPERATION
PAGE

Figure 15. EEPROM Programmer Software (page 13 of 37).

122

MACRO-80 3.36 17-Mar-80 PAGE 1-18

;* THIS ROUTINE CREATES A FILE CONTROL BLOCK FOR THE FILE *
;* REQUESTED BY THE USER THROUGH CONSOLE INPUT,

;* INPUT: N/A *

;* OUTPUT: FCB - CREATED FOR REQUESTED FILE NAME *

OFO CRE8SFCBz
OFOI F5 PUSH AF ;SAVE REGS
OF02 C5 PUSH BC
OF03 D5 PUSH DE
OF04 E5 PUSH HL

OF05 OE 09 LD CPRTLN ;**** * ** * * * *

OF07 11 OIAD LD DEMSG2 ;* PROMPT USER FOR FILENAME *
OFOA CD 0005 CALL CDOS

OFOD OE OA LD CtRDLN ;** * * **** * i *

OFOF 11 050E LD DECONBUF ;* GET USER RESPONSE *
OF12 CDO 0005 CALL CDOS

;******* SET DISK DRIVE IN FCB ***********************************

OF15 3A 0511 LD A,(CONBUF+3) ;GET SECOND CHAR OF USER RESPONSE
OF18 FE 3A CP COLON ;DID USER SPECIFY DISK DRIVE?
OFIA 28 OB JR ZtCR8$SD ;YES

)F1C OE 19 LD CCURDK ;NO? ** GET CURRENT *
OFIE CD 0005 CALL CDOS ** DISK DRIVE ***

0F21 3C INC A ;CHANGE IT TO FCB FORMAT
0F22 32 005C LD (FCBDI)tA ;SET CURRENT DRIVE IN FCB
0F25 18 08 JR CR8$C1

0F27 3A 0510 CR8SSD: LD At(CONBUF+2) ;GET USER SPECIFIED DRIVE
OF2A E6 03 AND 03H ;CONVERT TO FCB FORMAT
OF2C 32 005C LD (FCBDK),A ;SET FCB

OF2F 3E 20 CR8$C1: LD ABLANK ;* * * * * *

0F31 32 005D LD (FCBFN),A ;* BLANK OUT *
0F34 01 OOOA LD BCttO ;* FILE NAME *
0F37 11 005E LD DEFCBFN+t ;* AND EXTENT *
OF3A 21 OOSD LD HLtFCBFN ;* IN THE FCB *
OF3D ED DO LDIR

Figure 15. EEPROM Programmer Software (page 14 of 37).

123

MACRO-80 3.36 17-Mar-80 PACE 1-19

;****** SET FILE NAME IN FCB *

OF3F 21 0510 LD HLCONBUF+2 ;SET POINTER TO POSSIBLE FILE NAME

0F42 3A 0511 LD A,(CONBUF+3) ;GET SECOND CHAR OF USER RESPONSE

0F45 FE 3A CP COLON ;DID USER SPECIFY DISK DRIVE?

0F47 20 02 JR NZCR8$C2 ;NO, SO POINTER IS CORRECT

0F49 23 INC HL ;YES *** RUMP POINTER PAST DISK *

OF4A 23 INC HL *** DRIVE TO FILE NAME *

OF48 11 005D CR85C2: LD DEtFCBFN ;SET DESTINATION POINTER

OF4E 3E 2E CR8$TA: LD APERIOD ;*** AT EXTENT ***

OFSO BE CP (HL) ;*** MARKER? **

OF51 28 08 JR ZtCR8$FT ;YES

0F53 AF XOR A ** AT END OF

0F54 BE CP (HL) ;*** USER INPUT? **

0F55 28 OE JR ZCR8$HR ;YES) SO LEAVE EXTENT BLANK

0F57 ED AO LDI ;NO, MOVE A CHAR TO FCB

0F59 18 F3 JR CRW$TA ;GO TRY ANOTHER CHAR MOVE

;******* SET FILE TYPE (EXTENSION) IN FCB *****************

OFSB 23 CR8$FT: INC HL ;BUMP POINTER TO EXTENT NAME

OF5C 11 0065 LD DEtFCBFT ;SET DESTINATION POINTER

OFSF ED AO LDI
OF61 ED AO LDI ;* MOVE EXTENT NAME TO FCB *

0F63 ED AO I.DI

0F65 AF CR8$NR: XOR A ** INITIALIZE

0F66 32 007C LD (FCBNR),A ;*** NEXT RECORD PNTR *

0F69 El POP HL ;RESTORE REGS

OF6A DI POP DE

OF6 Cl POP BC

OF6C Fl POP AF

OF6D C9 RET
PAGE

Figure 15. EEPROM Programmer Software (page 15 of 37).

124

MACRO-80 3.36 17-Mar-80 PACE 1-20

;* THIS ROUTINE CONVERTS ADDRESSES INPUT THROUGH THE CONSOLE *
;* FROM ASCII TO PURE BINARY, AND STORES THEM IN APPROPRIATE *
;* SAVE AREAS. *

;* INPUT: N/A *

;* OUTPUT: REG A = 0, IF ADDR'S ENTERED PROPERLY *
;* : -1, IF ADDR'S INVALID *

;ft FLSTAD - *** THESE *** *

;*t FSTADD - *** ADDRESSES ***

;ft LSTADD - *** ARE *** *
;*t NXTADD - *** SET **ft*

OM6E SETSADDR:
OF6E C5 PUSH BC ;SAVE REGS
OF6F D5 PUSH DE
OF70 E5 PUSH HL
OF71 DD ES PUSH IX
0F73 FD E5 PUSH IY

0F75 OE 09 LD CPRTLN ;*** PROMPT USER ***

0F77 11 01BB LD DERSG3 ;f** FOR FILE ***

OF7A CD 0005 CALL CDOS ;*** STARTING ADDR ***

OF7D OE OA LD CtRDLN ;* * tf * * * * * * *

OF7F 11 050E LD DECONBUF ;* AWAIT RESPONSE f

0F82 CD 0005 CALL CDOS ;* * * * * * * ** * *

0F85 21 0505 LD HLPLSTAD ;** SAVE RESPONSE **

0F88 CD 1056 CALL ASTOBI ;** IN FLSTAD **

OF8DB FE FF CP NEGI ;INVALID DIGITS INPUT!
OF8D CA 1021 JP ZtSETSRT ;YES

OF90 CD 1029 CALL SET$IB ;CHECK ADDR FOR KILOBYTE BOUNDARY
0F93 FE FF CP NEG1 ;INVALID ADDR?
0F95 CA 1021 JP ZjSETSRT ;YES

0F98 OE 09 LD CtPRTLN ;*** PROMPT USER ***

OF9A 11 0259 LD DEtMSG4 ;*f* FOR EEPROM I*f

OF9D CD 0005 CALL CDOS ;*** STARTING ADDR ***

Figure 15. EEPROM Programmer Software (page 16 of 37).

125

RACRO-80 3.36 17-Mar-80 PAGE 1-21

OFAO OE OA LD CtRDLN
OFA2 11 050E LD DEICONBUF ;* AWAIT RESPONSE
OFA5 CD 0005 CALL CDOS

OFA8 21 0507 LD HLFSTADD ;*N SAVE RESPONSE **

OFAB CD 1056 CALL ASSTO$BI ;0 IN FSTADD 0

OFAE FE FF CP NEGI ;INVALID DIGITS INPUT?
OFBO CA 1021 JP ZPSET$RT ;YES

OFB3 FE 01 CP ONE ;ANY DIGITS INPUT?
OFB5 20 12 JR NZtSET$FA ;NO

OFB7 DD 21 0505 LD IXFLSTAD ;* THE START ADDR IN THE FILE *
OFBB FD 21 0507 LD IYFSTADD ;** (FLSTAD) MUST BE LESS THAN THE **

OFBF CD 103F CALL SET$CMP ;0 START ADDR OF THE PROM (FSTADD) II

OFC2 FE FF CP NEGI ;IS FLSTAD (= FSTADD?
OFC4 CA 1019 JP ZSET$ER ;HO, ERROR
OFC7 18 08 JR SET$C3 ;YES

OFC9 ED 5B 0505 SET$FA- LD DE,(FLSTAD) ;*** SET FSTADD **

OFCD ED 53 0507 LD (FSTADD),DE ;*** EQUAL TO FLSTAD *o

OFDI CD 1029 SET$C3z CALL SET$KB ;CHECK ADDR FOR KILOBYTE BOUNDARY
OFD4 FE FF CP NEGI ;INVALID ADDR?
OFD6 CA 1021 JP ZISET$RT ;YES

OFD9 OE 09 LD CtPRTLN ;'** PROMPT USER **
OFDB 11 0286 LD DEtMSG5 ;f** FOR EEPROM **

OFDE CD 0005 CALL CDOS ;*** ENDING ADDR **

OFEl OE OA LD CtRDLN * * * * * *

OFE3 11 050E LD DEtCONBUF ;* AWAIT RESPONSE *

OFE6 CD 0005 CALL CDOS * * * * * * *

OFE9 21 0509 LD HLtLSTADD ;0 SAVE RESPONSE 0

OFEC CD 1056 CALL ASTOBI i*I IN LSTADD *
OFEF FE FF CP NEG1 ;INVALID DIGIT INPUT?
OFF1 28 2E JR ZSET$RT ;YES

OFF3 DD 21 0507 LD IXtFSTADD ;o PROM START ADDR (FSTADD) **

OFF7 FD 21 0509 LD IYtLSTADD ;** MUST BE LESS THAN THE **

OFFB CD 103F CALL SET$CMP ;0 PROM END ADDR (LSTADD) *1

OFFE FE FF CP NEG1 ;IS FSTADD (: LSTADD?
1000 CA 1019 JP ZlSET$ER ;NO t ERROR

1003 ED 5B 0507 LD DE,(PSTADD) ;I* INIT NXTADD
1007 ED 53 0503 LD (NXTADD),DE ;** TO FSTADD ,

Figure 15. SEPROM Programer Software (page 17 of 37).

126

RACRO-80 3.36 17-Mar-80 PAGE 1-22

100B OE 02 SET$C5z LD CPRTCHR * * *

IOOD 1E OD LD E CR ;* MOVE CONSOLE *
IOOF CD 0005 CALL CDOS ;* CURSOR TO *
1012 IE OA LD EtLF ;* NEW LINE *
1014 CD 0005 CALL CDOS
1017 18 08 JR SETSRT

1019 OE 09 SETER: LD CPRTLN
101B 11 0468 LD DEIERR6 ;' PRINT ADDR ERROR *
1OE CD 0005 CALL CDOS * * * * * * * *

1021 FD El SET$RT: POP IY ;RESTORE REGS
1023 DD El POP IX
1025 El POP HL
1026 Dl POP DE
1027 Cl POP BC
1028 C9 RET

;*** CHECI ADDR TO BE SURE IT *
IS ON A KILOBYTE BOUNDARY ***

1029 SET$XBz
1029 7E LD At(HL) ;LOAD MSB
102A E6 03 AND 03H ;ARE BITS LESS THAN 1024 SET?

102C 20 06 JR NZS$$ER ;YES
102E 23 INC HL ;*** LOAD ***

102F 7E LD At(HL) ;*** LSB ***

1030 A7 AND A ;ARE ANY LSB BITS SET
1031 20 01 JR NZSKER ;YES
1033 C9 RET

1034 OE 09 SSK$ER: LD CPRTLN
1036 11 04A8 LD DEERR7 ;* PRINT BOUNDARY ERROR *
1039 CD 0005 CALL CDOS
103C 3E FF LD ApNEGI ;SET BOUNDARY ERROR FLAG
103E C9 RET

Figure 15. EEPROM Programmer Software (page 18 of 37).

127

L I,,

MACRO-80 3.36 17-Mar-80 PAGE 1-23

;** CHECX RELATIVE MAGNITUDES OF ADDRESSES in
;****** IX SHOULD POINT TO SMALLER VALUE ***

103F SET$CMP:
103F FD 7E 00 LD A,(IY) ;LOAD MSB
1042 DD BE 00 CP (IX) ;(Iy) : (IX)
1045 38 OC JR CtS$CSER ;(, IMPLIES ERROR
1047 20 08 JR NZS$CsOI ;)p MEANS LSB CAN BE IGNORED
1049 FD 7E 01 LD At(IY+I) ;LOAD LSB
104C DD BE 01 CP (IX+l) ;(IY+1) : (IX+I)
104F 38 02 JR CSCER ;(, IMPLIES ERROR
1051 AF S$CSO: XOR A ;SET (IX) (: (IY) FLAG
1052 C9 RET
1053 3E FF SSC$ER: LD ANEG1 ;SET (IX)) (IY) FLAG
1055 C9 RET

PAGE

Fiqure 15. EEPROM Programer Software (paqe 19 of 37).

128

MACRO-80 3.36 17-Mar-80 PACE 1-24

;* THIS ROUTINE CONVERTS ASCII ADDRESSES INTO BINARY. *

;* INPUT. HL - PNTR TO SAVE AREA FOR CONVERTED ADDR
CONBUF - THE CONSOLE BUFFER CONTAINING ASCII *

TO BE CONVERTED

;* OUTPUTt (HL) - WORD WITH BINARY ADDRESS *
;*t REG A 1, IF (SEMI)-VALID HEX INPUT BY USER *

O IF NO HEX CHAR'S WERE INPUT *
;* : -It IF INVALID INPUT BY USER f

1056 ASSTOSBIz
1056 C5 PUSH BC ;SAVE REGS
1057 E5 PUSH HL
1058 DD E5 PUSH IX
105A FD E5 PUSH 1Y

105C AF XOR A ;* *f ** *
105D 47 LD BA ;* CLEAR BC f

105E 4F LD CtA ;* t **

105F 77 LD (HL),A ;**t ZERO THE SAVE AREA ***
1060 23 INC HL ;*f* AND SET HL PHTR TO ***
1061 77 LD (HL)tA ;*** LSB OF SAVE AREA ***

1062 FD 21 050F LD IYCONBUF+l ;IY POINTS TO a OF CHAR IN CONBUF
1066 FD 4E 00 LD Ct(IY) ;SET BC TO # OF CHAR IN CONBUF
1069 B9 CP C ;IS CONBUF EMPTY?
106A 28 37 JR ZASB$RT ;YES
106C FD E5 PUSH IY ;NOt *f SET IX PNTR *ft
106E DD El POP IX f **f TO LAST CHAR ***
1070 DD 09 ADD IXtBC ; *** IN CONBUF *f*

1072 FD 36 00 30 LD (IY)t0 ;SET IN CASE ODD # OF CHAR IN CONBUF

1076 06 02 LD Bt2 ;INIT LOOP COUNTER
1078 79 LD AC 1ff* DID USER RESPOND WITH **f
1079 FE 03 CP 3 ;*** LESS THAN 3 DIGITS? f**

1071 30 01 JR MCtABC2 ;NO
107D 05 DEC B ;YESt SET LOOP COUNTER TO 1

1071 CD IOAA ABC2: CALL ABCONV ;CONVERT LS MIBBLE
1081 FE FF CP NEGI ;INVALID HEX INPUT?

Fiqure 15. E.PROM Programuer Software (paqe 20 of 37),

129

MACRO-80 3.36 17-Mar-80 PAGE 1-25

1083 28 16 JR ZABER ;YES
1085 ED 67 RRD ;NO, SAVE LS NIBBLE

1087 DD 2B DEC IX ;BUrP THE ASCII PNTR

1089 CD 1OAA CALL ABCONV ;CONVERT MS NIBBLE

108C FE FF CP NEGI ;INVALID HEX INPUT?

108E 28 03 JR ZABER ;YES
1090 ED 67 RRD ;SAVE MS NIBBLE
1092 DD 2B DEC IX ;BUMP THE ASCII PNTR

1094 29 DEC HL ;SET PNTR TO MSB OF ADDR SAVE AREA

1095 10 E7 DJNZ ABC2 ;JUMP BACK IF NOT DONE

1097 3E 01 LD AONE ;SET INPUT OK FLAG

1099 18 08 JR ABRT

109B OE 09 ABER: LD CPRTLN
109D 11 04A8 LD DEERR7 ;* PRINT INVALID ADDR ERROR *

IOAO CD 0005 CALL CDOS

10A3 FD El ABRTz POP IY ;RESTORE REGS

lOA5 DD El POP IX
lOA7 El POP HL
lOA8 Cl POP BC
1OA9 C9 RET

1OAA ABCONVt
IOAA DD 7E 00 LD A,(IX) ;LOAD CHAR TO BE CONVERTED

lOAD FE 47 CP 'F'+ ;** FILTER SOME ***

IOAF 30 09 JR NCABCE ;*** BAD INPUTS

1OB1 FE 3A CP 1?'+1 * *** * *

1OB3 38 02 JR CtABC5 ;* CONVERT ASCII *

iOB5 D6 07 SUB 7 ;* TO HEXIDECIMAL

107 E6 OF AtB$CS: AND OFH
1OB9 C9 RET

IOBA 3E FF ABCEz LD ANECX ;SET INVALID DIGIT FLAG

IOBC C9 RET
PAGE

Figure 15. EEPROM Proqrammer Software (page 21 of 37).

130

LI

MACRO-80 3,36 17-Mar-80 PAGE 1-26

;* THIS ROUTINE POSITIONS A DISK FILE SO THAT THE FIRST RECORD ,
;* IN DSKBUF IS THE ONE TO BE PROGRAMED INTO THE FIRST EEPROM. ,

;* INPUT: FLSTAD - START ADDR OF PROG ON DISK *

FSTADD - FIRST ADDR TO BE PROGRAMMED *
;. *

;* OUTPUT: DISK FILE IS POSITIONED SO THAT NEXT READ GETS *
PROPER RECORD. *

REG A = O IF FILE POSITIONED W/O ERRORS *
= -I IF FILE POSITIONING ERROR * *(

1OD POSWFIL:
1OBD C5 PUSH BC ;SAVE REGS
IOBE D5 PUSH DE
IOBF E5 PUSH HL
IOCO DD E5 PUSH IX

IOC2 3A 0505 LD A,(FLSTAD) ;INIT ** HL WITH **
IOC5 67 LD HA ** START **

1OC6 3A 0506 LD At(FLSTAD+I) ; ** ADDR **
10C9 6F LD LA ** ON FILE **

1OCA DD 21 0507 LD IXtFSTADD * PNTR Tb EEPROM FIRST ADDR

IOCE 11 0080 POSSNR: LD DERECSIZ ;*** ADD REC SIZE ***

IODI 19 ADD HLtDE ;*** TO FLSTAD

IOD2 DD 7E 00 LD A,(IX) ;LOAD MSB
1OD5 BC CP H ;*** FLSTAD > FSTADD
10D6 38 20 JR CIPOS$DN ;*** FSTADD IS W/IN NEXT RECORD ***

10D8 20 06 JR NZPOS$RD ;FLSTAD = FSTADD ... LOAD LSB
IODA DD 7E 01 LD At(IX+I) ;LOAD LSB
IODD BD CP L ;*** FLSTAD) FSTADD
lODE 38 18 JR CPOSSDH ;** FSTADD IS W/IN NEXT RECORD ***

IOEO OE 14 POS$RD: LD CtRDFIL * * * * * * * * * *
IOE2 11 005C LD DE FCB ;* READ A DISK RECORD *
IOE5 CD 0005 CALL CDOS
!OE8 FE 00 CP ZERO ;READ COMPLETE?
IOEA 28 E2 JR Z POS$NR ;YESt GO LOOK AT NEXT RECORD

IOEC OE 09 LD CPRTLN ;NO * * * * * * * * * * * * *

IOEE It 04CA LD DE,ERR8 * PRINT ERROR OR UNEXPECTED EOF *
IOPI CD 0005 CALL CDOS * * * * * * * * * * * * * * * * *

Figure 15. EEPROM Progrimer Software (page 22 of 37).

131

MACRO-80 3.36 11-Mar-80 PACE 1-27

10P4 3E FF LD ANEGI ;SET ERROR FLAG
10F6 18 01 JR POSWR

1OF8 AF POSSDNt XOR A ;SET NO ERRORS FLAG

10F9 DD El POSMRT POP Ix ;RESTORE REGS
lOFB El POP HL
WOC Dl POP DE
iOFD Cl POP BC
10FE C9 RET

PAGE

Figure 15. EEPROM Programmer Software (page 23 of 37).

132

MACRO-80 3.36 17-Mar-80 PACE 1-28

;* THIS ROUTINE FILLS DSKBUF WITH DATA READ FROM A DISK FILE. *
;* THE MAXIMUM SIZE BLOCK READ IS 1024 BYTES (THE SIZE OF THE *
;f HNVM 3008 EEPROM). *

;* INPUT, N/A *

;* OUTPUT: DSKBUF - FILLED WITH RECORDS JUST READ
REC A -1, IF NO RECORDS READ f

;ft O IF RECORDS READ OK *

IOFF RD$FIL:
1OFF C5 PUSH BC ;SAVE REGS
1100 D5 PUSH DE
1101 E5 PUSH HL

1102 06 08 LD BBF ;INITIALIZE LOOP COUNTER
1104 11 0560 LD DEtDSKBUF ;INITIALIZE DSKBUF PNTR

;*** READ LOOP *** I

It(' D5 RD$RA: PUSH DE ;SAVE DSKBUF PNTR
1108 OE 14 LD CRDFIL ;* * * * * * * * * * * * *
110A 11 005C LD DEtFCB ;* READ A DISK RECORD *
llOD CDO 0005 CALL CDOS ;* * * * * ftft** **
1110 Dl POP DE ;RESTORE DSKBUF PNTR

1111 FE 01 CP ONE ;EOF?
1113 28 OE JR ZRD$EF ;YES
1115 C5 PUSH BC ;SAVE LOOP COUNTER
1116 01 0080 LD BCIRECSIZ ;NOt * M* MOVE DATA FROM ***
1119 21 0080 LD HLCDOSSDB ; t**f CDOS DISK BUFFER *f*
IIC ED BO LDIR ; t*** TO DSKBUF ***
IlIE Cl POP BC ;RESTORE LOOP COUNTER

111F 10 E6 DJNZ RD$RA ;GO READ ANOTHER RECORD UNTIL BUF FULL

1121 18 09 JR RD$C3

;**f END LOOP ***

1123 3E 08 RD$EF: LD ADF ;*** DOES LOOP COUNTER INDICATE ***
1125 B8 CP B ;*** AT LEAST ONE RECORD READ? ***
1126 20 04 JR HZtRD$C3 ;YES

Figure 15. EEPROM Programmer Software (page 24 of 37).

133

MACRO-80 3.36 17-Mar-80 PAGE 1-29

1128 3E FF LD ANEG1 ;NO, SET REG A AS NO RECS READ

112A 18 01 JR RD$RT

112C AF RD$C3: XOR A ;SET REG A AS RECS READ

112D El RD$RT: POP HL ;RETORE REGS

112E DI POP DE
112F Cl POP BC
1130 C9 RET

PAGE

Figure 15. EEPROM Programmer Software (page 25 of 37).

134

MACRO-80 3.36 17-Mar-80 PAGE 1-30

;* THIS ROUTINE CLEARS A EEPROM TO ZEROS THROUGH THE FOLLOWING *
;* SEQUENCE OF CONTROL LINE MANIPULATIONS:

CS : 0
CE =1 *

;*t OE =1 *
VDD 0 *

;* FOLLOWED BE OE BEING PULSED FROM 1 TO 0. AFTER THESE *
;* MANIPULATIONS THE EEPROM IS CHECKED TO BE SURE IT CONTAINS *
;* ALL ZEROS. *

;* INPUT: N/A

;* OUTPUT: EEPROM IS CLEARED *
REG A = 0 - IF EEPROM ERASED *

ift= I - IF EEPROM NOT ERASED *

1131 ERA$IC:
1131 C5 PUSH BC ;SAVE REGS
1132 D5 PUSH DE
1133 E5 PUSH HL

1134 OE 09 LD CPRTLN ;* * * * * * * * * * * * * * * * f * *
1136 11 033C LD DEMSGERA ;* NOTIFY USER OF ERASE IN PROGRESS ,
1139 CD 0005 CALL CDOS ;* * * * * * * * * * f * * f ' f ft

113C 3E OE LD AV$5+D$CE+D$OE ;*** INIT CONTROL LINES ***

113E D3 24 OUT (PROMD)pA ;*** iEFORE APPLYING 17V ***

1140 E6 F7 AND VS17 ;** CLEAR VDD BITt f*

1142 03 24 OUT (PROMD),A ;f* RESULT - VOD = 17V **
1144 CD 117D CALL V$STABL ;WAIT FOR VOLTAGE TO STABLIZE

1147 E6 FD AND E$OE ;*** PULSE OE LOW, FORCING ***
1149 D3 24 OUT (PROMD)tA ;*** THE ERASE TO BEGIN **

;OE PULSE WIDTH IS 100 MICRO-SECS
114B 06 1E LD B130 ;f* THIS LOOP DELAYS **
114D 10 FE DJNZ $;** FOR 99 OUT OF **
114F 00 NOP ;** THE 100 REQUIRED 'f

1150 F6 02 OR D$OE ;*** SET OE BACK ***
1152 D3 24 OUT (PROMD),A ;*** TO INACTIVE "ft

Figure 15. EEPROM Programmer Software (page 26 of 37),

135

MACRO-80 3.36 17-Mar-80 PAGE 1-31

1154 F6 08 OR V5 ;*** SET VDD BIT) **

1156 D3 24 OUT (PROMD)jA ;*** RESULT - VDD =V ***

1158 CD 1178 CALL V$STABL ;WAIT FOR VOLTAGE TO STABLIZE

1158 CD 1182 CALL IC$RD ;FILL THE EEPROM BUFFER

;*** VERIFY THAT IC WAS ERASED (ALL ZEROS) ***

11SE 01 0400 LD BCBF*RECSIZ ;INITIALIZE ** BUFFER LENGTH **

1161 21 0960 LD HLPROMBF ** BUFFER POINTER **

1164 AF XOR A ** COMPARISON REG *

1165 ED Al ERA$CP: CPI
1167 20 05 JR NZERA$E2 ;JUMP IF BUFFER DID NOT CONTAIN ZERO

1169 EA 1165 JP PEERA$CP ;JUMP IF NOT END OF BUFFER

116C 18 09 JR ERA$RT ;RETURN TO CALLER WITH ERROR NOT SET

116E OE 09 ERA$E2: LD CtPRTLN ;*** NOTIFY USER **

1170 11 0381 LD DEERR2 ;*** THAT EEPROM ***

1173 CD 0005 CALL CDOS ;*D* DID NOT ERASE ***

1176 3C INC A ;SET ERROR FLAG FOR RETURN TO CALLER

1177 El ERA$RT: POP HL ;RESTORE REGS
1178 Dl POP DE
1179 Cl POP BC
117A C9 RET

;*** THIS ROUTINE ESSENTIALLY A WAIT LOOP TO ***

;*** ALLOW THE 5V - 17V SWITCH TO STABLIZE. ***

;** WAIT TIME IS APPROX 60 MICRO-SECONDS. **

1170 V$STABL:
1178 C5 PUSH BC
117C 06 10 LD Bt,0H
117E 10 FE DJNZ $
1180 Cl POP BC
1181 C9 RET

PAGE

Figure 15. EEPROM Proqramr Software (page 27 of 37).

136

MACRO-80 3.36 17-Mar-80 PAGE 1-32

;* THIS ROUTINE READS THE CONTENTS OF A EEPROM INTO ITS *

;* DEDICATED BUFFER AREA

;* INPUT: N/A

;* OUTPUT: PROMBF - CONTAINS EEPROM IMACE *

1182 ICSRD:

1182 F5 PUSH AF ;SAVE REGS

1183 C5 PUSH BC

1184 D5 PUSH DE

1185 E5 PUSH HL

1186 3E 90 LD ApCCW2 ;*I* PROGRAM PORTS Bt C - OUTPUT ***

1188 D3 23 OUT (PCNTRL)jA ;*** A - INPUT ***

118A 3E OD LD AtV$5+D$CE+E$CS ;I* VDD = 5V. DISABLE CE, **

118C D3 24 OUT (PROMD),A ;*** ENABLE OE t CS **

11SE OE 20 LD CPROMA ;INITIALIZE * PORT ADDR FOR INPUTS

1190 11 0000 LD DE,0 * EEPROM ADDR

1193 21 0960 LD HLtPROMBF * EEPROM BUFFER PNTR

;*** LOOP UNTIL END OF EEPROM IS READ ***

1196 F5 IC$RA: PUSH AF ;SAVE CONTROL LINE STATUS

1197 7A LD AD ;* * * * * * * * *

1198 D3 22 OUT (PROMC)tA ;* SET EEPROM *

119A 79 LD AE ;* ADDR BUS *

1199 D3 21 OUT (PROMB)tA * * * * * * *

119D Fl POP AF ;RESTORE CONTROL LINE STATUS

119E E6 FB AND E$CE ;*** ACTIVATE ***

IIAO D3 24 OUT (PROMD),A ;** CHIP ENABLE I

11A2 ED 40 IN B,(C) ;READ EEPROM DATA BUS

11A4 F6 04 OR D$CE ;*** DEACTIVATE ***

11A6 D3 24 OUT (PROMD),A ;I** CHIP ENABLE ***

1148 70 LD (HL),B ;PUT BYTE JUST READ INTO PROMBF

Figure 15. EEPRON Programmer Software (page 28 of 37).

137

MACRO-80 3,36 17-Mar-80 PAGE 1-33

11A9 23 INC HL ;BUMP PROMBF PNTR
X1AA 13 INC DE ;BUMP EEPROM ADDR
11AD CB 52 BIT 2,D ;DID ADDR OVERFLOW INTO BIT Ii?

;(IE, ADDR) 1K)
IIAD 28 E7 JR ZjIC$RA ;NO, GO READ ANOTHER BYTE

END LOOP *

11AF El POP HL ;RESTORE REGS
1IBO Dl POP DE
1IBI Cl POP BC
11B2 Fl POP AF
11B3 C9 RET

PACE

Figure 15. EEPROM Programmer Software (page 29 of 37).

138

MACRO-80 3.36 17-Mar-80 PAGE 1-34

1' *

;* THIS ROUTINE TRANSFERS DATA FROM THE DISK FILE BUFFER AREA *
14 TO THE EEPRON

;4 INPUT: DSKBUF - BUFFER CONTAINING DATA TO BE PROGRAMMED. 4

NXTADD - NEXT ADDR TO BE PROGRAMMEDt ASSUMED TO BE *

ON A KILOBYTE BOUNDARY, *
LSTADD - LAST ADDR TO BE PROGRAMMED. *

;' OUTPUTz EEPROM IS PROGRAMMED *

11B4 PROG$IC:
11B4 F5 PUSH AF ;SAVE REGS
1185 C5 PUSH BC
11B6 D5 PUSH DE
1IB7 ES PUSH HL

11B8 OE 09 LD CtPRTLN ;, 4 4, 4, 4•,4

11BA 11 0346 LD DEjMSGPRG N' NOTIFY OF PROGRAMMING IN PROGRESS 4

11BD CD 0005 CALL CDOS ;** **** ** **

11CO CD 12CI CALL INIT$BCT ;INIT * ***4* ** **
11C3 60 LD HB * EEPROM PROGRAM COUNTER *
11C4 69 LD LC *4* 444444*4**

11C5 ED 53 0503 LD DE,(NXTADD) ; **4*4*****4*

11C9 43 LD BE 4* NEXT *

11CA 4A LD CtD ** ADDR *4
1ICB C5 PUSH BC
I1CC 11 0560 LD DEDSKBUF 4 DSKBUF PNTR

I1CF 3E 80 LD AtCCWI 1** PROGRAM PORTS At B, C **
lIDI D3 23 OUT (PCNTRL),A ;*** FOR LATCHED OUTPUT *4*

11D3 3E OE LD AV$5+D$OE+D$CE ;,* VDD :V, **

lID5 D3 24 OUT (PROMD)tA ;*4* DISABLE CS, OEt CE *

11D7 E6 F7 AND V$17 ;** CLEAR VDD BIT, **

1D9 D3 24 OUT (PROMD),A ;*4 RESULT - VDD m 17V **

11DB CD 1178 CALL V$STABL ;WAIT FOR VOLTAGE TO STABLIZE

Figure 15. EEPROM Programmer Software (page 30 of 37).

139

Li

MACRO-80 3.36 17-Mar-80 PAGE 1-35

;*** LOOP UNTIL EEPROM IS PROGRAMMED *

11DE Cl PRGSNB: POP BC ;RESTORE NXTADD
IIDF F5 PUSH AF ;SAVE CONTROL LINE STATUS

IiEO 78 LD AB
11E1 D3 22 OUT (PROMC)tA ;* SET EEPROM *
11E3 79 LD AC ;* ADDR LINES *
11E4 D3 21 OUT (PROMB),A

11E6 IA LD A,(DE) ;*** SET EEPROM **

1IE7 D3 20 OUT (PROPA),A ;*** DATA LINES **

11E9 13 INC DE ;BUMP DSKBUF PHTR

I1EA Fl POP AF ;RESTORE CONTROL LINE STATUS
IlEB 03 INC BC ;** BUMP AND 1*

IIEC Cs PUSH BC ;** STORE NXTADD **

lIED E6 FB AND ESCE ;*** ENABLE ***

IIEF D3 24 OUT (PROMD)tA ;*** CE **

;CE PULSE WIDTH IS 100 MICRO-SECS

IIF1 06 IE LD 8,30 ;** THIS LOOP DELAYS **

11F3 10 FE DJNZ $;** FOR 99 OUT OF THE *
11F5 00 HOP ;** 100 REQUIRED **

11F6 F6 04 OR D$CE ;*** DISABLE **
11F8 D3 24 OUT (PROMD),A ;*** CE *

IIFA 01 0000 LD BCZERO
11FD 37 SCF ;* DECREMENT EEPROM PROGRAM COUNTER *

lIFE ED 42 SBC HLBC * *** * * * * * * * * ** * * ** *

1200 20 DC JR NZtPRGSNB ;BRANCH BACK UNTIL DONE

;*** END LOOP *

1202 F6 08 OR V$5 SET VDD BITt **

1204 D3 24 OUT (PROMD)tA ;*** RESULT - VDD z5 * *

1206 CD 117B CALL V$STABL ;WAIT FOR VOLTAGE TO STABLIZE

1209 Cl POP BC ;CLEAN UP STACK
120A El POP HL ;RESTORE REGS

120B D1 POP DE
120C Cl POP BC
120D F1 POP AF
120E C9 RET

PAGE

Figure 15. EEPROR Programmer Software (page 31 of 37).

140

MACRO-80 3.36 17-Mar-80 PAGE 1-36

;N THIS ROUTINE COMPARES THE DATA CONTAINED IN THE DISK FILE N

;N AND EEPROM BUFFERSt MAKING SURE THEY ARE EQUAL

;N INPUT: DSKBUF - BUFFER FILLED WITH DATA TO BE COMPARED
TO PROM BUFFER.

;N OUTPUT: APPROPRIATE MESSAGES N

REG A Op IF NO ERRORS ENCOUNTERED N

= -1, IF COMPARISON ERRORS N

120F VER$IC:
120F C5 PUSH BC ;SAVE REGS
1210 D5 PUSH DE
1211 E5 PUSH HL

1212 0E 09 LD CPRTLH ;N*N*NNN**NNNNN N

1214 11 0353 LD DEMSGVER ;N NOTIFY OF VERIFY IN PROGRESS N

1217 CD 0005 CALL CDOS ;NNNNNNNNNNNNNNNNN

121A CD 1182 CALL IC$RD

121D AF XOR A ;INIT N* ERROR *

121E 32 050D LD (ERRCHT)jA ** COUNTER NN

1221 CD 12C1 CALL INITSBCT N COMPARE COUNTER

1224 3A 0503 LD At(NXTADD) ;NNNNNN* NNNN

1227 67 LD HA ;N N

1228 3A 0504 LD A,(NXTADD+I) ;N N

1220 6F LD LA ;N
122C A7 AND A ;N BUMP NXTADD FOR N

122D ED 4A ADC HLtBC ;N NEXT EEPIOM N

122F 7C LD AtH ;N N

1230 32 0503 LD (NXTADD),A ;N N

1233 7D LD AL ;N N

1234 32 0504 LD (HXTADD+1),A ;N N N N N N N N N N N

1237 11 095F LD DEPROMBF-1 ;INITIALIZE * EEPROM BUFFER PHTR

123A 21 0560 LD HLDSIBUF * DISK BUFFER PNTR

;NN LOOP UNTIL ENTIRE BLOCK IS VERIFIED ***

123D 13 VERSNB% INC DE ;BUMP PROMBF PNTR TO NEXT BYTE

Figure 15. EEPRON Programmer Software (page 32 of 37).

141

-- - -
- -.....

MACRO-80 3.36 17-Mar-80 PACE 1-37

123E 1A LD At(DE) ;LOAD A BYTE FOR COMPARISON

123F ED Al CPI ;COMPARE EEPROM AND DISK BUFFERS

1241 C4 1269 CALL NZVER$E4 ;BYTES NOT EQUAL - CALL ERROR ROUTINE

1244 3A 050D LD A,(ERRCNT) ;rrr HAVE WE PRINTED MAX **r

1247 FE 10 CP MAXERR N*** NUMBER OF ERRORS? *

1249 28 OE JR Z, VER$C2 ;YESt THATS ENOUGH, IGNORE REST OF BUF

124B AF XOR A
124C B8 CP B ;* IF BLOCK COUNTER *

124D 20 EE JR NZVERSNB ;, NOT EQUAL 0 THEN *

124F B9 CP C ; CONTINUE LOOP *

1250 20 ED JR NZtVER$NB

;*** END LOOP ***

1252 3A 050D LD A,(ERRCNT) ;*** WERE ANY ERRORS ***

1255 FE 00 CP ZERO ;** ENCOUNTERED? **

1257 28 04 JR ZVER$C3 ;NO

1259 3E FF VER$C2: LD AtNEGI ;YES, SET ERROR FLAG

125B 18 08 JR VER$RT

125D OE 09 VER$C3: LD CPRTLN

125F 11 0314 LD DEMSG8 ;* PRINT NO ERRORS FOUND *

1262 CD 0005 CALL CDOS

1265 El VER$RT. POP HL ;RESTORE REGS

1266 DI POP DE
1267 Cl POP BC

1268 C9 RET

;**N PRINT AN ERROR LINE ***

1269 F5 VERSE4: PUSH AF ;SAVE REGS

126A C5 PUSH BC
1268 D5 PUSH DE

126C E5 PUSH HL

********************************* INITIALIZE TOP OF STACK ,,r*r

;**r FOR INTERFACE TO FOLLOWING **
;e******* PRINT ALGORITHM *********

126D D5 PUSH DE

126E E5 PUSH HL

126F A7 AND A ;RESET CPU CARRY FLAG

1270 01 0561 LD BCDSXBUF+I ;* * * * * * * * * **

1273 ED 42 SBC HLBC ;* COMPUTE EEPROM ERROR ADDR

1275 22 050B LD (ERRADD),HL ;* ADDR z (ERRADD + 1) - DSKBUF - 1

Figure 15. EEPROM Programmer Software (page 33 of 37).

142

MACRO-80 3.36 17-Mar-80 PACE 1-38

1278 21 050C LD HLtERRADD+1 ;e ADDR z HL DSKBUF 1 e

1273 E5 PUSH HL ;, * * * * ***** , I ***

127C 3A 050D LD At(ERRCNT) ;r* HAVE THERE BEEN **
127F A7 AND A ;* ANY ERRORS YET? ***
1280 20 08 JR NZVER$C5 ;YES, SO SKIP ERROR BANNER

1282 OE 09 LD CPRTLN * * * * * * * * * * * ,
1284 11 03D2 I.D DEtERR4$O ;* PRINT DIFFERENCE BANNER r
1287 CD 0005 CALL CDOS

128A OE 09 VER$C5: LD CPRTLN
128C 11 041E LD DEERR4$I ;r MOVE CURSOR I

128F CD 0005 CALL CDOS

1292 El POP HL ;** r ** , *
1293 CD 12E5 CALL PRTSBYT ;, PRINT EEPRON *
1296 29 DEC HL ;* ERROR ADDR *
1297 CD 12E5 CALL PRT$BYT

129A 11 0434 LD DEERR4$2 ;,r PRINT *0
129D CD 0005 CALL CDOS ;** SLASH *0

12A0 El POP HL ;GET FILE PNTR
12AI 2B DEC HL ;ADJUST TO PROPER BYTE
12A2 CD 12E5 CALL PRTtBYT ;PRINT BYTE VALUE

12A5 CD 0005 CALL CDOS ;,,, PRINT A SLASH ,r

12A8 El POP HL ;0r PRINT PROM *
12A9 CD 12E5 CALL PRTSBYT ;*rr BYTE VALUE *r

12AC OE 02 1D CPRTCHR
12AE 1E OD LD EtCR ;* MOVE CURSOR *

1230 CD 0005 CALL CDOS ;* TO NEXT *
1233 IE OA LD EtLF LINE *
12B5 CD 0005 CALL CDOS * * * *

128 3C INC A ;,rr BUMP ERROR ,r

1299 32 050D LD (ERRCHT)tA ;*** COUNTER **
12BC El POP HL ;RESTORE RECS
12BD Dl POP DE
12BE Cl POP BC
12BF Fl POP AF
12C0 C9 RIT

PAGE

Figure 15. EPRON Programmer Software (page 34 of 37).

143

MACRO-80 3.36 17-Mar-80 PAGE 1-39

;* THIS ROUTINE COMPUTES A BLOCK LENGTH THAT IS THE AAXIMUII OF *
;V EITHER LSTADD - NXTADD + 1 *

OR
BF i RECSIZ (CURRENTLY 1024) *

;, INPUT: HXTADD - NEXT EEPROM ADDR TO BE PROGRAMED *
OR VERIFIED *

LSTADD - LAST EEPROM ADDR TO BE PROGRAMMED *
OR VERIFIED

;V OUTPUT: BC PAIR - BLOCK LENGTH *

;V V * V* V * V* ** * V* V V V V V * V V V V* * V V* * V * V V V V V

12C1 INIT$BCT:
12C1 E5 PUSH HL ;SAVE REGS

12C2 3A 0509 LD A,(LSTADD) ;*V****** **

12C5 67 LD HA ;V *
12C6 3A 050A LD A,(LSTADD+1) ;* V

12C9 6F LD LA ;* COMPUTE *
12CA 3A 0503 LD A?(NXTADD) ;* BLOCK COUNTER V

12CD 47 LD BA ;* V

l2CE 3A 0504 LD A,(NXTADD+I) ;* V

12DI 4F LD CA ;V (IEt BC) V

12D2 A7 AND A ;* - *
12D3 ED 42 SBC HLBC ;* LSTADD - NXTADD + I *
12D5 23 INC HL ;* *
12D6 44 LD BtH ;* *
12D7 4D LD CL ;**V*I*V** ***

12D8 A7 AND A ;** **** ** ** ****
12D9 21 0400 LD HLBF*RECSIZ ;* IS COMPUTED BLOCK COUNTER) 1024? V

12DC ED 42 SBC HLtBC * * * * * * * * * * * * * * * * *
12DE 30 03 JR NCtINT$RT ;NO, SO WE HAVE A SHORT BLOCK
12EO 01 0400 LD SCBF*RECSIZ ;YES,. SET BLOCK COUNTER TO MAX

12E3 El INT$RTz POP HL ;RESTORE REGS
12E4 C9 RET

PAGE

Figure 15. EEPROM Programmer Software (page 35 of 37).

144

MACRO-80 3.36 17-Mar-80 PAGE 1-40

;* THIS ROUTINE CONVERTS A BYTE TO TWO ASCII CHARACTERS AND ft

;* PRINTS THEN ON THE CONSOLE.

;* INPUT: HL - POINTS TO BYTE TO BE PRINTED *

;, OUTPUT: TWO HEX DIGITS ARE PRINTED ON CONSOLE *

12E5 PRT$BYT:
12E5 F5 PUSH AF ;SAVE REGS
12E6 C5 PUSH BC
12E7 D5 PUSH DE
12E8 46 LD Bt(HL) ;SAVE BYTE TO BE PRINTED

12E9 ED 6F RLD ;LOAD REG A WITH IST HEX DIGIT
12EB CD I2F8 CALL PRT$DIG ;GO PRINT DIGIT
12EE ED 6F RLD ;LOAD 2ND HEX DIGIT
12FO CD 12F8 CALL PRT$DIG ;GO PRINT DIGIT

12F3 70 LD (HL),B ;RESTORE BYTE THAT WAS PRINTED
12F4 DI POP DE ;RESTORE REGS
12F5 Cl POP BC
12F6 Fl Pop AF
12F7 C9 RET

;*f* CONVERT & PRINT A HEX DIGIT ***

12F8 PRTSDIG:
12F8 E6 OF AND OFH ;GET RID OF HIGH ORDER GARBAGE
12FA FE OA CP OAH ;IS HEX DIGIT = 0 -9
12FC 38 06 JR CPRT$C5 ;YES
I2FE D6 09 SUB 9 ;NO, ft* CONVERT TO I**

1300 F6 40 OR 040H ft*** ASCII A - F ***
1302 18 02 JR PRT$C6
1304 F6 30 PRTSC5: OR 030H ;CONVERT TO ASCII 0 - 9

1306 OE 02 PRT$C6: LD CtPRTCHR ;* * * * *** *

1308 5F LD EpA ;* PRINT THE DIGIT *

1309 CD 0005 CALL CDOS ;* * * * f* * *

130C C9 RET

END ENTRY$PT

Figure 15. EEPROM Programmer Software (page 36 of 37).

145

MACRO-80 3,36 17-Mar-80 PAGE S

Macroe t

Symbols:
ABC2 107E ABC5 10B7 ABCE 10BA ABCO 1OAA
ABER 1099 ABRT 10A3 ASTO 1056 BF 0008
BLANK 0020 CCW1 0080 CCW2 0090 CDOS 0005
CDOSSD 0080 CIO 0001 CLSFL 0010 COLON 003A
CONBUF 050E CR OQOD CR8$C1 OF2F CR8$C2 OF4B
CR8$FT 0F59 CR&$NR 0F65 CR8$SD OF27 CR8$TA OF4E
CR8FL 0016 CREWS OFOI CURDK 0019 D$C3 OED6
D$CE 0004 D$CS OOFE D$DN OEF6 DSERRS OEED
D$OE 0002 D$OPR MEE U$RA OEA8 D$WA OEBD
DSKIBUF 0560 E$CE OOFB W$S 0001 E$OE O0FD
E$OPR OD90 ENTRY$ 0100 ERA$CP 1165 ERA$E2 116E
ERASIC 1131 ERA$RT 1177 ERRI 0360 ERR2 0381
ERR3 03A6 ERR4$O 03D2 ERR4SI 041E ERR4$2 0434
ERRS 0438 ERR6 046B ERR7 00A8 ERR8 04CA
ERRADD 050B ERRCNT 050D FCB 005C FCBDK 005C

FCBEX 0068 FCBFN 005D FCBFT 0065 FCBMP 006C
FCBNR 007C FCBRC 006B FLSTAD 0505 FSTADD 0507
GETUOP OD64 IC$RA 1196 IC$RD 1182 INIT$B 12C1
INTSRT 12E3 LF 0O0A LSTADD 0509 MAXERR 0010
MSG1 014C MSC2 01AD MSG3 O1BB MSG4 0259
MSG5 0286 PISG6 02B2 MSG7 02F2 F1SG8 0314

MSGERA 033C MSGPRG 0346 NSGVER 0353 NEGZ FP
NXTADD 0503 OLDSP 014A ONE 0001 OPNFL OOOF
P$C1 ODBE P$C2 ODE8 P$DN OEOD P$E8 05
P$NI ODCD P$OPR ODA3 PCNTRL 0023 PERIOD 002E
POSSDN 10F8 POS$FI 108D POS$NR 1OCE POS$RD 10E0
POSSRT 10F9 PRG$NB 11DE PROGSI 11B4 PROMA 0020
PROMS 0021 PROMBF 0960 PROI C 0022 PROMD 0024

PRTSBY 12E5 PRTSC5 1304 PRT$C6 1306 PRT$DI 12F8
PRTCHR 0002 PRTEND 0024 PRTLN 0009 RD$C3 112C
RD$EF 1123 RDSFIL 10FF RD$RA 1107 RD$RT 112D
RDCHR 0001 RDFIL 0014 RDLN OOOA RECSIZ 0080

SSCSER 10. SSC$OK 1051 SSUSR 1034 SEYSAD OF6E
SET$C3 0FD1 SET$C5 100B SET$CM 103F SET$ER 1019
SET$FA OFC? SETSKB 1029 SETSRT 1021 SLASH 002F
STACK 014A START 0060 V$17 00F7 V$5 0008
VSC1 0532 V$DN 0E83 V$E8 0518 V$NI 0E41
V$OPR 0E18 V$STAD 1178 VER$C2 1259 VER$C3 125D
VER$CS 128A VER$E4 1269 VER$IC 120F VER$ND 123D
VER$RT 1265 WRFIL 0015 ZERO 0000

No Fatal error~s)

Figure 15. EEPROM Programmer Softo.re (page 37 of 37).

146

IV. User's Manual

The EEPROM Programmer described in the following manual

is an S-100 based peripheral device used to support HNVM 3008

EEPROM's. The hardware and its associated software executes

the following operations:

1. Erase,
2. Program,
3. Verify, and/or
4. Dump.

Operation of the Programmer is simple and requires only that

the user be able to log onto the system and initiate

execution of the program call EEPROM. Programmer software

prompts the user for subsequent inputs.

The Programmer operates on only one EEPROM at a time.

Jobs requiring more than one EEPROM are managed by software.

At appropriate times, software prompts the user to remove old

EEPROM's and insert new ones to continue operation. A result

of this method of operation is that the length of the longest

program that can be manipulated by the Programmer is

essentially unlimited. However, another result is that

ordering of EEPROM insertions is critical, since operationQ

proceed from the low addresses to the high ones.

147

System Start-up

The following sequence describes how to get started with

the EEPROM Programmer.

1. Insure EEPROM Programmer card is seated in
the motherboard.

2. Flip the switch at bottom of zero insertion
force socket to "OFF", disabling the
Programmer.

3. Insure zero insertion force socket is empty.

4. Type "EEPROM" on console (ie, start program
execution).

5. Console will prompt for additional information.

** NOTE **

There are two times when it is safe to insert/remove

EEPROM's to or from the Programmer socket. One is when

prompted by the console. Another is when software prompts

the user to perform any operation. At these times the

software disables the 20V power supply, thereby reducing the

chances of destroying a EEPROM.

Commands

After initiating EEPROM Programmer software, the console

prompts the user to enter an execution command with the

following message:

WHAT OPERATION DO YOU WISH TO PERFORM?
E(R)ASE, (P)ROGRAM, (V)ERIFY, (D)UMP, OR E(X)IT

To execute any one of the five listed comminds, the user must

enter the letter contained within the parentheses of the

desired operation.

148

Together the four commands - Erase, Program, Verify, and

Dump - provide a flexible system for supporting HNVM 3008

EEPROM's. The Exit command is provided for easy return to

the operating system. The following discussion describes the

first four commands in more detail.

ERASE. This command is the simplest of the four,

requiring only the EEPROM to be erased. Its execution

destroys data held in a EEPROM by clearing all bits to zero.

PROGRAM. This command is used to program one or more

EEPROM's. Programming of a EEPROM is accomplished by:

1. erasing EEPROM contents,
2. re-writing appropriate bytes, and

3. checking the new contents.

Programs to be dumped to EEPROM(s) must reside on a floppy

disk file and be in the format of a .COM file. COM is the

default file extension used by CDOS to indicate an executable

program. For files longer than one kilobyte, the console

instructs users to change EEPROM's as one is filled and

others remain to be filled. Programming continues until

either end-of-file is encountered, or the last user specified

EEPROM address is written.

Note, when programming EEPROM's for use with the IFPDAS,

the origin of software linked into a CON file should be

hexidecimal address 0000H. This address corresponds to the

physical beginning of the EEPROM address space within the IR.

The last EEPROM address is IFFFH.

To simplify recovery from errors encountered during

programming, the Program command allows for calculating

149

relative starting points. That is, programming can begin at

some point within a disk file instead of always starting at

the first byte. Relative starting points are calculated from

user responses to questions about the starting address of the

program on the disk file, and from the first EEPROM address

to be programmed.

This programming flexibility places several restrictions

on Programmer software. The first one is that the starting

address of programs on a dis)' file must be on a kilobyte

boundary. In addition, the first EEPROM address to be

programmed must also be on a kilobyte boundary. In effect

this means that programming can not start in the middle of an

EEPROM. Another restriction is that the first EEPROM address

to be programmed must be greater than or equal to the

beginning address of the program on the disk file. Finally,

the last EEPi'3M address to be programmed must be greater than

or equal to the first EEPROM address.

The following example illustrates the relative starting

flexibility described above. A user wishes to program a

series of EEPROM's from a disk file which starts at

hexadecimal address OOOOH and ends at 4082H. To accomplish

this the user would initiate the Program command and respond

to he console prompts as specified below:

FILENAME? filename

PLEASE ANSWER THE FOLLOWING QUESTIONS IN HEXIDECIMAL
NOTE: THE FIRST 2 ADDRESSES MUST BE ON KILOBYTE

BOUNDARIES

150

STARTING ADDRESS OF PROGRAM ON FILE? 0

FIRST ADDRESS TO BE PROGRAMMED/VERIFIED? (return)
LAST ADDRESS TO BE PROGRAMMED/VERIFIED? 4082

Note that a "RETURN" may be entered as the first address to

be programmed when it is equal to the starting address of the

program on file.

In this example programming proceeds error-free until

software detects an error at address 4055H. At this point

the first 16 EEPROM's were properly programmed. Therefore,

programming can proceed from the 17th EEPROM (ie, from

address 4000H). So, to continue programming at the 17th

EEPROM the user would again perform a Program operation with

responses to console prompts as specified below:

FILENAME? filename

PLEASE ANSWER THE FOLLOWING QUESTIONS IN HEXIDECIMAL
NOTE: THE FIRST 2 ADDRESSES MUST BE ON KILOBYTE

BOUNDARIES

STARTING ADDRESS OF PROGRAM ON FILE? 0
FIRST ADDRESS TO BE PROGRAMMED/VERIFIED? 4000
LAST ADDRESS TO BE PROGRAMMED/VERIFIED? 4082

Barring continued, unrecoverable errors, the 17 EEPROM's will

contain the entire 4083 byte program; even though one was

reprogrammed.

VERIFY. This command is used to compare a disk file to

one or more EEPROM's. The result of the comparison is a

report that either the EEPROM's match the file or they do

not. If they don't match, up to 16 differences will be

illustrated and verification will terminate.

As implied in the previous paragraph, the verification

process may involve comparing more than one EEPROM against a

151

file which is larger than one kilobyte. In these cases

software prompts the user to change EEPROM's at appropriate

times. During this change, the user must be aware of the

order in which the EEPROM's are inserted for verification.

The order of comparison is from the EEPROM with the lowest

physical address to the one with the highest. Logically this

order corresponds with the direction in which the disk file

is read.

As was the case with the program command, the verify

command allows relative starting addresses. Relative

addressing is accomplished in the same manner for both the

verify and program commands, with appropriate subroutines

being shared between them.

As an example of where the relative addressing facility

would be used, consider the following scenario. The fourth

and fifth EEPROM's within a six kilobyte program are

suspected of being swapped. So, to find which is the fourth

EEPROM, on . is chosen and compared to the OCOOH to OFFFH

address space of the program contained on the disk file.

Assuming that the program on the disk file starts at address

0, the user would initiate the Verify command and respond to

console prompts as specified below:

FILENAME? filename

PLEASE ANSWFR THE FOLLOWING QUESTIONS IN HEXIDECIMAL
NOTE: THE FIRST 2 ADDRESSES MUST BE ON KILOBYTE

BOUNDARIES

STARTING ADDRESS OF PROGRAM ON FILE? 0
FIRST ADDRESS TO BE PROGRAMMED/VERIFIED? COO
LAST ADDRESS TO BE PROGRAMMED/VERIFIED? FFF

152

The result of these responses is that the chosen EEPROM is

compared to the fourth kilobyte (decimal - 3072 to 4095) of

the program on the disk file. If verification completes

without errors then the chosen EEPROM is indeed the fourth of

the sequence.

DUMP. This command is used to dump one or more EEPROM's

to a disk file. In this way a floppy disk file can be

created to contain the contents of a set of EEPROM's.

** NOTE **
* ** **** * *** *

Since the dump command creates a new disk file to hold

EEPROM(s) data, a user response to the software request for a

filename must be a unique file.

Usually programs are larger than one kilobyte and

stretch across several EEPROM's. Still one file can be

created to hold an entire program. The dump command allows

for dumping sequences of EEPROM's by asking:

DO YOU HAVE MORE EEPROM'S? (Y/N)

after the dumping of each EEPROM is completed. To include

another EEPROM in the dump sequence the user replies with a

"Y"go. Software will instruct the user what to do next. Note

also that the program sequence on the disk file is entirely

determined by the order in which EEPROM's are inserted in the

the Programmer socket. The first EEPROM appears first on the

file.

153

Errors

EEPROM Programmer software recognizes many user errors.

When an error occurs, a message is printed, execution of the

current command ceases, and program control is returned to

the Programmer command entry level. At the command entry

level the user can retry the erroneous command, or try a

different command. Error messages and some of their causes

are:

FILE COULD NOT BE CREATED - disk directory is full or
requested file already exists;

FILE NOT FOUND - the requested file name is not
on the specified disk;

DISK RECORD COULD NOT BE WRITTEN - either the directory
is full or no more file space is available;

DISK READ ERROR OR UNEXPECTED EOF - an attempt to read a
disk record resulted in an error with no record
transferred;

PROM DID NOT ERASE - the current EEPROM can not be
cleared to zero's;

VERIFY ERROR - data contained on the disk file and in
the current EEPROM do not match;

RELATIVE MAGNITUDE OF ADDRESS IS INVALID - beginning
addresses must be less than ending addresses;

INVALID ADDRESS - addresses must be in hexidecimal; some
addresses must also be on kilobyte boundaries.

154

Appendix C

MBM Interactive Development System

Contents

I. Introduction 156

II. S-100 Interface 157

III. Software 161

MIDS Software 162

MBM Software 196

IV. User's Manual 228

System Start-up 228
Command Summary 229

Display Command Menu 230
Initialize MBM Buffer 230

Set Interrupt I/O Processing 230
Set Polled I/O Processing 230
Print MBM Buffer on Console 231
Read BMC Address Register (and Print) . . . 231
Read FIFO (and Print) 231
Print BMC Status 231
Set BMC Register Values 231
Print BMC. Register Values 232
Write FIFO 233
Exit to CDOS 233

Command Features 233
MBM Initialization 234
Interrupt Processing 234
Errors 235

155

MBM Interactive Development System

I. Introduction

This Appendix documents operation of the MBM Interactive

Development System (MIDS), designed to support Intel 7110

MBM's. Documentation consists of an Intel BPK-72 to S-100

hardware interface schematic, and MIDS software listings.

Following the listings is a user's manual which describes the

System's capabilities and summarizes its operating

procedures. Before using MIDS, users must be familiar with

MBM operating characteristics as outlined in the BPK-72

Bubble Memory Prototype Kit User's Manual (Ref 2).

MIDS is a flexible tool for supporting Intel 7110 MBM's.

This flexibility results from two design considerations. One

is that the hardware is based on the S-100 bus. Another is

that software runs under control of the Cromemco Disk

Operating System (CDOS) and consequently the Control Program

for Microprocessors (CPM) Operating System. Further

explanations of these design decisions are contained in

following sections of this document.

156

II. S-100 Interface

Adaptation of the BPK-72 bus structure to the S-100 bus

is illustrated in the schematic diagram of Figure 16. To

facilitate understanding of the schematic, Table XIV lists

the functions of the IC's used to construct the bus interface.

More detailed information on individual IC's is available

from The TTL Data Book (Ref 28).

The BPK-72 to S-100 interface is assembled on an S-100

wirewrap card. Attached to the card is a 44 pin connector

for seating the BPK-72. This construction allows easy

transportation of MBM hardware to any S-100 based system.

Another aid to transportability is the full buffering of the

interface circuitry to present only a single TTL load to the

S-lO0 bus. Table XV lists the subset of S-1O0 pins required

by the BPK-72.

Yet another aid to transportability is the onboard

switch selection of the seven most significant bits of the

MBM peripheral port addresses. This allows MBM hardware

addresses to be chosen which do not interfere with the

permanent I/0 addresses of the host computer. These

addresses are selected by opening and closing appropriate

switches. Closed switches indicate zero bit settings, and

open switches indicate ones. The most significant address

157

TABLE XIII

Selectable MBM I/0 Ports

Port Address Function

BBBB BBBO Bi-directional Data Bus

BBBB BBBl Command Port (output only)

BBBB BBBI Status Port (input only)

bit corresponds to pin 1 of the IC socket that houses the

address swithes.

Table XIII lists MBM port addresses and their related

function. The least significant bit of the addresses is

hardwired. The user selectable bits are denoted with B's.

When setting these B's, be sure that corresponding changes

are made to MIDS software.

158

TABLE XIV

BPK-72 to S-100 IC Listing

Device Functional Schematic
Type Designation Reference

7402 Quad 2-input NOR Gates Ul

7404 Hex Inverters U2
74244 Octal Buffers U3

8216 4-bit Bidirectional
Bus Driver U4,U5

7485 4-bit Magnitude Comparator U6,U7

TABLE XV

BPK-72 to S-100 Interface Definition

S-100 Signal S-100 Signal
Pin Function Pin Function

I +8V 73 INT
2 +18V 75 RESET

25 CLK (4 MHz) 79 Addr 0
29 Addr 5 80 Addr 1

30 Addr 4 81 Addr 2
31 Addr 3 82 Addr 6
35 Data Out 1 83 Addr 7
36 Data Out 0 88 Data Out 2
38 Data Out 4 89 Data Out 3
39 Data Out 5 90 Data Out 7

40 Data Out 6 91 Data In 4
41 Data In 2 92 Data IN 5
42 Data In 3 93 Data In 6
43 Data In 7 94 Data In 1
45 OUT 95 Data In 0

46 INP 96 INTA
50 GND

159

7r

'OULSE
23')- p SMAMt CE7--<

4S>----Mf, r, UZ -- <K

46) INO U2

40 --- <16

to
wr --- <ov

73*>- LAO

OEQ---(AA

am U3 W
DD INT (6
Ilms atr Ul 4 a

In T
/M. oldl
art /No a
IN7 DO
OTO INO Ul I
EN a

LAZ

+ U &V
04 Nr-

ar "Ur.
-7 MIC

074 S&
'04 96

07

2.

z .047
U7

INC
0z4

Sol a#

\-zE .91

93

L
40 - , I

a XK -<L.

. I p - - 4 r
Fr

T T'
. L. L.

Figure 16. BPK-72 to S-100 Interface Schematic.

160

III. Software

The MIDS software listings are attached. The first

listing, Figure 17, supports the interactive feature of MIDS

by accepting and directing user requests for system

operations. The second listing, Figure 18, is a subprogram

containing MBM driver routines. Both programs were written

in Z-80 assembler language with system calls to CDOS for I/O

support.

Because CDOS system calls are restricted to those

between I and 27, the software is transportable to CPM based

systems without modification. This transport feature results

from identical execution of the operating systems for calls

in the range of I to 27.

161

MACRO-80 3.36 17-Mar-80 PAGE 1

*Z80

0000' ASEG
ORG IOOH

iTITLE: MIDS - NBM INTERACTIVE DEVELOPMENT SYSTEM
;AUTHOR: CAPT R E MEISHER
;DATE.
;SYSTEM: CROMENCO Z2D / CDOS 2.36
;DESCRIPTION: THIS PROGRAM IS AN INTERACTIVE DEBUGGER FOR

THE INTEL 7110 MAGNETIC BUBBLE MEMORY (MBM).
;OPERATION: THIS PROGRAM CONTAINS THE INTERACTIVE ROUTINES

FOR COMMUNICATING WITH AN MBM DEBUGGER USER,
TO OPERATE IT MUST BE LINKED TO APPROPRIATE MBM
DRIVER ROUTINES. DRIVER ROUTINES ARE CONTAINED
IN MBM.RELt AN OBJECT FILE OF THE FOLLOWING
ROUTINES.

EXTRN MBM$STAT
EXTRN MBM$ICLR
EXTRN MBM$ISET
EXTRN MBM$WBRM
EXTRN MBN$INIT
EXTRN MBM$READ
EXTRN MBMSWRIT
EXTRN MBMSRSEK
EXTRN $BMSRXBR
EXTRN MBMSWXBR
EXTRN MBM$WZBL
EXTRN MBM$RFSA
EXTRN MBMSABRT
EXTRN MBMtWSEK
EXTRN MBMtRZBL
EXTRN MBMSRCDT
EXTRN MBMSFFRE
EXTRN MBMIPURG
EXTRN MBM$SRES

IN ADDITIONt MBM.REL CONTAINS THE FOLLOWING
COMMON VARIABLES:

EXTRN MM$BMCR
EXTRN MBM$PSIZ

PAGE

Figure 17. MIDS Softuarp (page I of 34).

162

RACRO-80 3.36 17-Mr-80 PAGE 1-1

;DICTIONARYt THE FOLLOWING IS A LIST OF SOME OF THE
ABREVIATIONS USED IN THIS SOURCE LISTING.

BLR - BLOCK LENGTH REGISTER
BMC - BUBBLE MEMORY CONTROLLER
BUF - BUFFER
CHAR - CHARACTER
CNTR - COUNTER
ICD - INTERNALLY CORRECT DATA (MBM COMMAND)
INIT -INITIALIZE
LSB -LEAST SIGNIFICANT BIT/BYTE
MBM - MAGNETIC BUBBLE MEMORY
MSB - MOST SIGNIFICANT BIT/BYTE
NBR - NUMBER
PNTR -POINTER
RCD - READ CORRECTED DATA (MBM COMMAND)
REG -REGISTER
XFER -TRANSFER

;**0******~N**CONSTANTS

FFFF NEGI EQU -1
0000 ZERO EQU 0
0001 ONE EaU 1
0002 TWO EQU 2
0003 THREE EOU 3
0004 FOUR EQU 4
O0OD CR EaU ODH ;ASCII CARRAIGE RETURN

OOOA LF EQU OAH ;ASCII LINE FEED

0059 YES EOU 'Y" ;*w* YES/NO RESPONSES *"

004E NO EQU 'N' ;*** TO USER PROMPTS ***

0020 SPACE EOU 1 "

0055 FILLER EOU 55H ;FILL CHAR FOR FIFO BUF

;NMB REGISTER ADDRISS COUNTER (RAC) ASSIGNMENTS

O00E ADRO EaU OEN ;ADDRESS REG (LSB)

OOOF ADRI EQU OFH ;ADDRESS REG (MSB)

0000 FIFO EOU OOH ;FIFO I/0 REG

;MBN CONTROLLER (BDC) STATUS REG BIT POSITIONS

0005 OPFUPS EQU 5 ;OP FAIL

0006 OPCBPS EOU 6 ;OP COMPLETE

Figure 17. MIDS Software (page 2 of 34).

163

MACRO-80 3.36 17-Mar-80 PAGE 1-2

0007 BSYBPS EQU 7 ;BMC BUSY

;MBM CONTROLLER (BMC) ENABLE REG BIT POSITIONS

0000 INBPS ElU 0 ;INTERRUPT ENABLE (NORMAL)
0001 IEBPS EQU 1 ;INTERRUPT ENABLE (ERROR)
0002 DABPS EQU 2 ;DNA ENABLE
0003 XFRBPS EOU 3 ;MAX FSA TO BMC XFER RATE
0004 IBLBPS EQU 4 ;WRITE BOOTLOOP ENABLE
0005 RCDBPS EQU 5 ;ENABLE READ CORRECTED DATA
0006 ICDBPS EOU 6 ;ENABLE INTERNALLY CORRECTED DATA
0007 IPBPS EQU 7 ;INTERRUPT ENABLE (PARITY)

;MBM CONTROLLER ENABLE REG BIT SETTINGS

0020 RCDBIT EOU 20H ;READ CORRECTED DATA
0040 ICDBIT EQU 40H ;INTERNALLY CORRECT DATA

;OTHER MBM RELATED CONSTANTS

0028 BN$DATA EQU 28H ;DATA I/0 PORT
0029 BM$CMD EQU 29H ;COMMAND OUT PORT

;CDOS SYSTEM CALL PARAMETERS

0005 CDOS EQU 0005H ;CDOS ENTRY POINT
0001 RDCHR EQU 1 ;READ A CHAR FROM THE CONSOLE
0002 PRTCHR EQU 2 ;WRITE A CHAR TO THE CONSOLE
0009 PRTLN EQU 9 ;PRINT BUF LINE ON CONSOLE
OOOA RDLN EOU 10 ;READ LINE FROM CONSOLE INTO BUF
0024 PRTEND E91! 1'$;END PRINT BUF PNTR

;CONSOLE MESSAGES

0100 OD OA 24 CRLF: DD CRpLFPRTEND
0103 OD OA OA PREMSG: DB CRLFILF
0106 20 20 20 57 DB WELCOME TO THE INTEL 7110 INTERACTIVE DEBUGGER'

Fiqure 17. MIDS Software (paqe 3 of 34).

164

MACRO;-80 3.36 17-Mar-80 PAGE 1-3

0137 OD OA OA DB CRLFtLF
013A 41 4E 59 54 DB 'ANYTIME YOU WISH TO SEE A COMMAND MENUt TYPE H (HELP)'
016F OD OA DB CRtLF
0171 20 20 20 20 DB I TO RETURN TO CDOSt TYPE X (EXIT)'
01A2 OD OA OA DB CRtLFLF
01A 54 48 45 20 DB 'THE SYSTEM IS CURRENTLY SET FOR POLLED I/0 PROCESSING'
O1DA OD OA 24 DB CRtLFPRTEND
OIDD OD OA 43 4F PROMPT: DB CRLFt'COMMAHD - ',PRTEND
01EA OD OA 09 20 CMDERR: DB CRLFt' *** ERROR ,e, INVALID COMMAND',PRTEND
020D OD OA 09 20 INPERR: DB CRLFt' *** ERROR *** INVALID INPUT' PRTEND
022E 20 20 3C 3C BSYWRN: DB ((BUSY)>) ',PRTEND
023F 20 20 3C 3C OPCMPL: DB (((OP COMPLETE))) 'tPRTEND
0257 20 20 3C 3C OPERR: DB ((OP FAIL))) CAUTION: BMC REGISTER'tCR,LF
0282 09 09 09 20 DB VALUES MAY BE INVALID',PRTEND
029C 20 20 53 54 STATHD: DB STATUS = ',PRTEND
02A8 OD OA 09 4E BLKMSG: O CRLF,' NUMBER OF PAGES PER I/O BLOCK 'PRTEND
02CC OD OA OA 09 EN1MSG: DB CRLFtLF' ENABLE NORMAL INTERRUPTS?
02EA 28 59 2F 4E DB '(Y/N/Return) ',PRTEND
02F8 OD OA 09 20 EN2MSG: DB CRtLF,' INTERRUPT ON ERRORS? (Y/N/Return) ',PRTEND
0323 OD OA 09 20 EN3MSG: DB CRLF,' MAXIMUM TRANSFER RATE? (Y/N/Return) ',PRTEND
034E OD OA 09 20 EN5MSG: DB CRtLF,' READ CORRECTED DATA? (Y/N/Return) ',PRTEND
0379 OD OA 09 20 EN6MSG: DB CRtLF,' INTERNALLY CORRECT DATA? (Y/N/Return) 'PF'RTEND
03A4 OD OA OA 09 REIMSG: DB CRLFLFp' (*(*(*(*(* REINITIALIZING MBM
03C7 50 45 52 49 DD 'PERIPHERAL *)*)*>*)*)'tCRLFLFPRTEND
03E0 OD OA OA 09 MSC4$1: DB CRtLFLF,' WHICH BUBBLE? ',PRTEND
03FC OD OA 09 52 MSG4S2: DB CRILF,' RECORD NUMBER (3 HEX DIGITS)? 'IPRTEND
041E 20 20 49 4E MSGI$1: DB ' INITIAL VALUE (1 HEX BYTE)? ',PRTEND
043D OD OA 09 09 MSGI$2: DB CRLF,' INCREMENT (Q HEX BYTE)? ',PRTEND
0451 20 20 42 4D MSGQ: DB BMC ADDRESS REG= 'tPRTEND
0470 20 20 4E 4F DESMSG: DB NOTE: IST BYTE OF FIFO IS DESTROYED BY THIS
049F 43 4F 4D 4D DB 'COMMAND',CRILFPRTEND
04A9 OD OA 09 4F STADDR: DD CRtLF,' OPERATION STARTED AT MBM ADDRESS ',PRTEND
04CE BLROMSG:
04CE OD OA 20 20 DB CRLFI' BLR LSB = 'pPRTEND
04E0 BLRIMSG:
04E0 OD OA 20 20 DB CRILFI' BLR MSB = 'IPRTEND
04F2 ENRMSG:
04F2 OD OA 20 20 DB CRLF,' ENABLE REG= 'pPRTEND
0504 ADROMSGz
0504 OD OA 20 20 DB CRLF,' ADR LSB % ',PRTEND
0516 ADRIMSG:
0516 OD OA 20 20 DB CRjLFj' ADR MSB = 'jPRTEND
0528 OD OA MENU: DB CRLF
052A 09 09 2A 2A DB I ***** BM COMMAND MENU *****',CRLFLF
054B 30 20 2D 20 DB '0 - WRITE BOOTLOOP REGISTER MASKED

Figure 17. MIDS Software (page 4 of 34).

165

MACRO-80 3.36 17-Mar-80 PAGE 1-9

0570 31 20 2D 20 DB '1 - INITIALIZE',CRLF
0580 32 20 2D 20 DB '2 - READ BUBBLE
0597 33 20 2D 20 DB '3 - WRITE BUBBLE'tCRtLF
05A9 34 20 2D 20 DB '4 READ SEEK
05E 35 20 2D 20 DB '5 - READ BOOTLOOP REGISTER'tCRLF
05DA 36 20 2D 20 DB '6 - WRITE BOOTLOOP REGISTER
05FB 37 20 2D 20 DB '7 - WRITE BOOTLOOP',CRtLF
060F 38 20 20 20 DB '8 - READ FSA STATUS
0629 39 20 2D 20 DB '9 - ABORT',CRLF
0634 41 20 2D 20 DB 'A - WRITE SEEK
064A 42 20 2D 20 DB 'B - READ BOOTLOOP',CRtLF
065D 43 20 2D 20 DB 'C - READ CORRECTED DATA
067B 44 20 2D 20 DB 'D - RESET FIFO',CRtLF
068B 45 20 2D 20 DB 'E - MBM PURGE
06AO 46 20 2D 20 DB 'F - SOFTWARE RESET'tCRLFLF
06B5 48 20 2D 20 DB 'H - DISPLAY COMMAND MENU
06D3 49 20 2D 20 DB 'I - INITIALIZE MBM BUFFER',CRLF
06EE 4A 20 2D 20 DB 'J - SET INTERRUPT I/0 PROCESSING
0713 4B 20 2D 20 DB 'K - SET POLLED I/O PROCESSING'tCRtLF
0732 50 20 20 20 DB 'P -PRINT MOM BUFFER ON CONSOLE
0757 51 20 2D 20 DB '0 - READ BMC ADDR REG (AND PRINT)',CRLF
077A 52 20 20 20 DB 'R - READ FIFO (AND PRINT)
0799 53 20 20 20 DB 'S - PRINT BMC STATUS'tCRLF
07AF 55 20 2D 20 DB 'U - SET BMC REG VALUES
07CC 56 20 2D 20 DB 'V - PRINT BMC REG VALUES'tCRLF
07E6 57 20 2D 20 DB 'W - WRITE FIFO
O7FC 58 20 20 20 DB 'X - EXIT TO COOS',CRLFPRTEND

;*****f******* END CONSTPTS *

;***************** VARIABLES **********************************

080F 00 INTFLGi DB 0 ;INTERRUPT ENABLED FLAG
00CC BUFLEN E0U 204D ;LENGTH OF MBM I/0 BUFFER
0810 MBMBUF: DS 2040 ;MBM I/O BUFFER
08DC 50 CONBF: DB 800 ;BUFFER LENGTH
08DD 00 DB 0 ;NBR OF CHAR READ

08DE DS 80D ;CONSOLE INPUT BUFFER

;************** END VARIABLES *
PAGE

Fiqure 17. MIDS Software (page 5 of 34).

166

MACRO-80 3.36 17-Mar-80 PAGE 1-14

092E ED 73 0978 START: LD (OLDSP)tSP ;SAVE OLD STACK PNTR
0932 31 0978 LD SPSTACK ;INIT NEW STACK
0935 C3 097A JP CONTINUE
0938 DS 64 ;64 BYTE STACK
0978 STACK EOU $;TOP OF STACK
0978 0000 OLDSP: DW 0 ;OLD STACK PNTR SAVE AREA

097A CONTINUE:
097A OE 09 LD CjPRTLN
097C 11 0103 LD DEtPRENSG ;* PRINT PREAMBLE *
097F CD 0005 CALL CDOS

0982 GETSOPR:
0982 OE 09 LD CtPRTLN
0984 11 ODD LD DEPROMPT ;* PROMPT USER WITH COMMAND -

0987 CD 0005 CALL CDOS

098A OE 01 LD CtRDCHR ;*** GET USER **
098C CD 0005 CALL CDOS ;*** RESPONSE **

098F FE 30 CP '0'

0991 CC 0A77 CALL ZtOPR$O ;WRITE BOOTLOOP REG MASKED
0994 CA 0982 JP ZGET$OPR

0997 FE 31 CP '1'

0999 CC 0A85 CALL ZtOPR$1 ;INITIALIZE
099C CA 0982 JP ZIGETSOPR

099F FE 32 CP '2'
09A1 CC OA8E CALL ZOPR$2 ;READ DATA
09A4 CA 0982 JP ZtGET$OPR

09A7 FE 33 CP '3'
09A9 CC OAB2 CALL ZOPR$3 ;WRITE DATA
09AC CA 0982 JP ZGET$OPR

09AF FE 34 CP "4,

09D1 CC OACP CALL ZOPRS4 ;READ SEEK
0984 CA 0982 JP ZtGET$OPR

09B7 FE 35 CP '5'
09B9 CC OADB CALL ZtOPR$5 ;READ BOOTLOOP REG
099C CA 0982 JP ZGET$OPR

Figure 17. RIDS Software (page 6 of 34).

167

I.

IACRO-80 3.36 17-Mar-80 PAGE 1-15

09DF FE 36 CP '6'
09C1 CC OAE9 CALL ZOPR$6 ;WRITE BOOTLOOP REG
09C4 CA 0982 JP ZGET$OPR

09C7 FE 37 CP "7'
09C9 CC OAF7 CALL ZOPR$7 ;WRITE BOOTLOOP
09CC CA 0982 JP ZGET$OPR

09CF FE 38 CP '8'

0901 CC 000 CALL ZpOPR$8 ;READ FSA STATUS

09D4 CA 0982 JP ZtGET$OPR

0907 FE 39 CP '9'
09D9 CC 0B09 CALL ZOPR$9 ;ABORT
090C CA 0982 JP ZGETSOPR

09DF FE 41 CP 'A,
09E1 CC 0812 CALL ZOPR$A ;WRITE SEEK
09E4 CA 0982 JP ZGET$OPR

09E7 FE 42 CP 'B'
09E9 CC 0B22 CALL ZtOPR$B ;READ BOOTLOOP
09EC CA 0982 JP ZoGET$OPR

09EF FE 43 CP 'Cl

09F1 CC 082B CALL ZOPR$C ;READ CORRECTED DATA
09F4 CA 0982 JP ZtGETSOPR

09F7 FE 44 CP
09F9 CC 0834 CALL ZOPR$D ;RESET FIFO
09FC CA 0982 JP ZtGET$OPR

09FF FE 45 CP 'E'

OA01 CC 093D CALL ZOPR$E ;BMN PURGE
OA04 CA 0982 JP ZtGET$OPR

OA07 FE 46 CP 'F'
OA09 CC 0046 CALL ZOPR$F ;SOFTWARE RESET
OAOC CA 0982 JP ZtGET$OPR

OAOF FE 48 CP 'H'

0A1l CC OB4F CALL ZOPR$H ;HELP

OA14 CA 0982 JP ZtGET$OPR

0A17 ?" 49 CP 'I'

0A19 CC 05E CALL ZOPRSI ;INITIALIZE MBM BUFFER

OAIC CA 0982 JP ZGET$OPR

Figure 17. MIDS Software (page 7 of 34).

168

MACRO-80 3.36 17-Mar-80 PAGE 1-16

OAIF FE 4A CP 'J,
OA21 CC OBDO CALL ZOPR$J ;SET INTERRUPT I/O PROCESSING
0A24 CA 0982 JP ZGET$OPR

0A27 FE 48 CP 'K'
0A29 CC OBDB CALL ZtOPR$;SET POLLED I/0 PROCESSING
OA2C CA 0982 JP ZGET$OPR

OA2F FE 50 CP ''
0A31 CC ODE5 CALL ZtOPR$P ;PRINT MBM BUFFER
0A34 CA 0982 JP ZtGET$OPR

0A37 FE 51 CP '0'
0A39 CC 0C61 CALL ZOPRtQ ;PRINT BMC ADDR REG
OA3C CA 0982 JP ZGET$OPR

OA3F FE 52 CP 'R'
0A41 CC 0C87 CALL ZOPR$R ;READ FIFO
0A44 CA 0982 JP ZtGET$OPR

0A47 FE 53 CP Is.

0A49 CC 0D47 CALL ZPRTSBMS ;PRINT BMC STATUS
OA4C CA 0982 JP ZGET$OPR

OA4F FE 55 CP 'U'

OA51 CC OCB4 CALL ZOPR$U ;SET BMC RECS VALUES
0A54 CA 0982 JP ZGET$OPR

0A57 FE 56 CP IV,

0A59 CC OCDF CALL ZtOPR$V ;PRINT BMC REG VALUES
OA5C CA 0982 JP ZGET$OPR

OA5F FE 57 CP W'

0A61 CC OD2C CALL ZtOPR$W ;WRITE FIFO
0A64 CA 0982 JP ZGET$OPR

OA67 FE 58 CP IX.

0A69 CA 0D40 jP ZOPR$X ;EXIT

OA6C OE 09 LD CPRTLN
OA6E 11 O1EA LD DEtCMDERR ;* INVALID COMMAND *
OA71 CD 0005 CALL CDOS
0A74 C3 0982 JP GET$OPR

PAGE

Figure 17. MIDS Software (page 8 of 34).

169

RACRO-80 3.36 17-Mar-80 PAGE 1-17

** * ** * ** , * ,, ****

;*** WRITE BOOTLOOP REG MASKED ***
*,, , , * , * * ** , , * ****

OA77 F5 OPR$O% PUSH AF
OA78 E5 PUSH HL
079 21 0810 LD HLMBMBUF ;SET PNTR TO MBI BUF
OA7C CD 0000* CALL MBMSWBRN ;WRITE BOOTLOOP REG MASKED

OA7F CD 0D47 CALL PRT$BMS ;PRINT MBM STATUS
0A82 El POP HL
0A83 Fl POP AF
0A84 C9 RET

;*** INITIALIZE ***
;* , *** * ****

DA85 F5 OPR$1: PUSH AF
0A86 CD 0000* CALL MBMSINIT ;INITIALIZE
0A89 CD 0D47 CALL PRT$BNS ;PRINT MBM STATUS
OA8C Fl POP AF
OA8D C9 RET

;*** * * * * * ***

READ DATA ***

OA8E F5 OPR$2: PUSH AF
OA8F C5 PUSH 9C
OA90 E5 PUSH HL

OA91 3E 55 LD AFILLER ;INIT FILL CHAR
OA93 06 CC LD BtBUFLEN ; LOOP CNTR

0A95 21 0810 LD HLMDMBUF ; BUF PNTR
0A98 77 LD (HL)tA * * * * * *

0A99 23 INC HL ;* FILL THE BUF *

OA9A 10 FC DJNZ $-2

OA9C ED 4B 0003* LD BCp(MBN$BMCR+3) ;GET STARTING PAGE NBR

OAAO 21 0810 LD HLtNBMBUF ;LOAD INPUT BUF PNTR

OAA3 CD 0000* CALL MBMSREAD ;READ MBM PAGE(S)

OAA6 CD 0D47 CALL PRT$BMS ;PRINT MBM STATUS

Figure 17, MIDS Software (page 9 of 34),

170

MACRO-80 3.36 17-Mar-80 PAGE 1-18

OAA9 60 LD HtB ;** PRINT ***

OAAA 69 LD LC ;*** READ ***

OAAB CD 0D84 CALL PRTSAD ;* START ADDR *

OAAE El POP HL
OAAF Cl POP BC
OABO F1 POP AF
OAB1 C9 RET

;*H WRITE DATA **

OAB2 F5 OPR$3: PUSH AF
OAB3 C5 PUSH BC
OAB4 E5 PUSH HL

OA95 ED 4B 0003* LD BC,(MBM$BMCR+3) ;GET STARTING PAGE NBR
0AB9 21 0810 LD HLMBBUF ;LOAD OUTPUT BUF PNTR
OABC CD 0000* CALL MBMSWRIT ;WRITE A PAGE
OABF CD 0D47 CALL PRTBMS ;PRINT MBM STATUS
OAC2 60 LD HtB ;*** PRINT *1*

OAC3 69 LD LIC ;*** WRITE *

OAC4 CD 0D84 CALL PRTSAD ;*n START ADDR *1*

OAC7 El POP HL
OAC8 Cl POP 8C
OAC9 Fl POP AF
OACA C9 RET

PAGE

Figure 17. MIDS Software (page 10 of 34).

171

MACRO-80 3.36 17-Mar-80 PACE 1-19

-*** ** ** * *

;** READ SEEK ***
,0 * * * * ***

OACB F5 OPR$4% PUSH AF

OACC CD OED7 CALL SETADR ;SET BMC ADDR REG VALUES
OACF FE FF CP NECI ;INVALID INPUT?
OAD1 28 06 JR ZtO4$RT ;YES
OAD3 CD 0000* CALL MBM$RSEK ;GO SEEK
OAD6 CD 0D47 CALL PRTSBMS ;PRINT MBM STATUS

OAD9 Fl 04$RTz POP AF
OADA C9 RET

;*** READ BOOTLOOP REG **
'**** * ** * ** * ****

OADB FS OPR$S5: PUSH AF
OADC ES PUSH HL
OADD 21 0810 LD HLMBMBUF ;SET BUF PNTR FOR CALL
OAEO CD 0000* CALL MBM$RXBR ;READ BOOTLOOP REG
OAE3 CD 0D47 CALL PRT$BMS ;PRINT MBM STATUS
OAEb El POP HL
OAE7 Fl POP AF
OAE8 C9 RET

.*** * * ** ** * * ** **

;*** WRITE BOOTLOOP REG *0
;*0* u** * ** ** *****

OAE9 P5 OPR$6: PUSH AF
OAEA ES PUSH HL
OAEB 21 0810 LD HLMBMBUF ;SET BUF PNTR FOR CALL
OAEE CD 0000* CALL MBM$WXBR ;WRITE BOOTLOOP REG
OAFI CD 0D47 CALL PRT$DNS ;PRIHT MEN STATUS
OAF4 El POP HL
OAF5 Fl POP AF
OAF6 C9 RET

PAGE

Figure 17. RIDS Software (page 11 of 34).

172

MACRO-80 3.36 17-Mar-80 PACE 1-20

;*** WRITE DOOTLOOP ***
'*** * * * * * * * * ***

OAF7 F5 OPR$7t PUSH AF
OAF8 CD 0000* CALL NBM$WZBL ;WRITE BOOTLOOP
OAFB CD 0D47 CALL PRT$BMS ;PRINT MBM STATUS
OAFE Fl POP AF
OAFF C9 RET

;*** READ FSA STATUS' **

OBO0 F5 OPR$8z PUSH AF
OB01 CD 0000* CALL IBMRFSA ;READ FSA STATUS'
0804 CD 0D47 CALL PRTSBMS ;PRINT JMR STATUS
0907 Fl POP AF
0908 C9 RET

;e** ABORT ***

090? F5 OPR$? PUSH AF
OBOA CD 0000* CALL IBM$ABRT ;ABORT CURRENT INSTRUCTION
OBOD CD 0D47 CALL PRTtBMS ;PRINT MBM STATUS
0910 Fl POP AF
O11 C9 RET

;*** WRITE SEEK ***

0812 F5 OPRtAz PUSH AF

013 CD OED7 CALL SETADR ;SET BMC ADDR REG VALUES
0916 FE FF CP NEGI ;INVALID INPUT?
0918 28 06 JR ZAtRT ;YES
08A CD 0000* CALL MB9$WSEX ;GO SEEK

Figure 17. MIDS Software (page 12 of 34).

173

MXC-80 3.36 17-IMar-80 PAGE 1-21

0319 CD 0D47 CALL PRTSBIS ;PRIN4T MBM STATUS

0320 Fl ASRT: POP AF
0B21 C9 RET

;**READ BODTLOIJP *

0B22 F5 OPRSBz PUSH AF
0B23 CD 0000* CALL IMMRZBL ;READ BOOTLOOP

0326 CD 0D47 CALL PRTSBIS ;PRINT MBM STATUS
OB29 Fl POP AF
032A C9 RET

;*IREAD CORRECTED DATA I

0323 F5 OPR$C: PUSH AF
032C CD 0000* CALL flDJYRCDT ;READ CORRECTED DATA

032? CD 0947 CALL PRT$BMiS ;PRINT MBP1 STATUS

0332 Fl POP AF

0B33 C9 RET

F** IFO RESET *

0334 F5 OPR$D: PUSH A?

0335 CD 0000* CALL MBM1$FFRE ;RESET BIIC FIFO

0338 CD 0947 CALL PRT$BMS ;PRINT MBM STATUS

033 Fl POP A?
033C C9 RET

Figure 17. MIDS Software (page 13 of 34).

174

MACRO-80 3.36 17-Mar-80 PAGE 1-22

;*** PURGE *0

OB3D F5 OPR$Ez PUSH AF

OD3E CD 0000* CALL MBMSPURG ;PURGE MBM SYSTEM
0941 CD 0D47 CALL PRTSBDS ;PRINT MBM STATUS
0B44 Fl POP AF
0345 C9 RET

.*** *, * * * * * * ***

;*** SOFTWARE RESET ***
;*** * I *, *, * * * *

0346 F5 OPRIF: PUSH AF
0347 CD 0000* CALL MBMSSRES ;RESET MBM SYSTEM
OB4A CD 0D47 CALL PRTSBMS ;PRINT MBM STATUS
034D Fl POP AF
OB4E C9 RET

;*** HELP *1*

034? F5 OPR$H: PUSH AF
0B50 C5 PUSH BC
0351 D5 PUSH DE

0B52 OE 09 LD CPRTLN
0B54 11 0528 LD DEIENU ;* PRINT COMMAND MENU *
0B57 CD 0005 CALL CDOS

095A 01 POP DE
0353 Cl POP BC
05C F1 POP AF
OD5D C9 RET

PAGE

Figure 17. MIDS Software (page 14 of 34).

175

I..

MACRO-80 3.36 17-har-80 PACE 1-23

;** ** ** * ** ** *****

1 INITIALIZE NBN BUFFER ***

OB5E F5 OPR$I: PUSH AF
OB5F C5 PUSH BC
0B60 D5 PUSH DE
061 E5 PUSH HL

0B62 OE 09 LD CtPRTLN ;*** PROMPT USER ***
0864 11 041E LD DEMSGISI ;*** FOR INITIAL ***
0867 CD 0005 CALL CDOS ;*** VALUE **

036A OE OA LD CIRDLN
OB6C 11 O8DC LD DEtCONBF ;* AWAIT RESPONSE *
0B6F CD 0005 CALL CDOS

0872 3A 08DD LD A,(COHBF+1) ;GET NBR OF CHAR INPUT
0875 FE 02 CP TWO ;WERE THERE 2?
0377 20 33 JR HZI$ERR ;NO
0879 CD OBB9 CALL CONV$2 ;CONVERT THE 2 CHAR TO BINARY
OB7C 32 0810 LD (MBMBUF)jA ;SET 1ST BUFFER VALUE

OB7F OE 0 LD CtPRTLN ;** PROMPT USER **
0381 11 043D LD DEMSGI$2 ;*** FOR INCREMENT **
0384 CD 0005 CALL CDOS ;*** VALUE ***

0387 OE OA LD CtRDLH * * * * * * *
0389 11 08DC LD DEpCONBF ;* AWAIT RESPONSE *
08C CD 0005 CALL CDOS * * * * * * *

03SF 3A 08DD LD At(COKBF+I) ;GET NBR OF CHAR INPUT
0392 FE 02 CP TWO ;WERE THERE 2?
0394 20 16 JR NZtl$ERR ;NO
0396 CD 0339 CALL CONV$2 ;CONVERT THE 2 CHAR TO BINARY
0B99 4F LD CtA ;SAVE INCREMENT VALUE
OB9A 3A 0810 LD At("BMBUF) ;SET INITIAL VALUE
OB9D 06 Cl LD BtBUFLEN-1 ; LOOP COUNTER/MOVE LENGTH
OB9F 21 0811 LD HLMBMBUF+l ; MBM BUFFER PNTR

OBA2 81 I$LP5: ADD AC ;BUMP PREVIOUS MBMBUF BYTE
OBA3 77 LD (HL)PA ;SAVE IN MBMBUF
OBA4 23 INC HL ;BUMP MBNBUF PNTR
OBA5 10 FB DJNZ I$LP5 ;LOOP UNTIL DONE

03A7 CD ODE5 CALL OPR$P ;PRINT FIFO BUFFER ON CONSOLE

Figure 17. MIDS Software (page 15 of 34).

176

MACRO-80 3.36 17-Mar-80 PACE 1-24

OBAA 18 08 JR ISRT

OBAC OE 09 I$ERR- LD CtPRTLN ;**** * * f* ***** **
OBAE 11 020D LD DEINPERR ;* PRINT INVALID INPUT MSG ,
OBBI CD 0005 CALL CDOS ; *f * * * f * ft* . .

OBB4 El ISRT: POP HL
OB5 Dl POP DE
OB6 Cl POP BC
OBB7 Fl POP AF
OBB8 C9 RET

** CONVERT 2 ASCII BYTES TO BINARY ***

OB9 3A O8DE CONV$2: LD At(CONBF+2) ;GET MOST SIGNIFICANT NIBBLE
OBBC CD OF7D CALL A$BSCONV ;CONVERT IT TO BINARY
OBBF 47 LD BA * * * * * , . * * , * , *
OBCO CD 20 SLA B ;* SET MOST SIGNIFICANT *
OBC2 CB 20 SLA B ;* NIBBLE WHILE ZEROING *
OBC4 CB 20 SLA B ;* THE LEAST SIGNIFICANT *
OBC6 CB 20 SLA B * * * * * * * * * * * * *
OBC8 3A 08DF LD A,(CONBF+3) ;GET LEAST SIGNIFICANT NIBBLE
OBCD CD OF7D CALL ASB$CONV ;CONVERT IT TO BINARY
OBCE DO OR B ;MERGE WITH MSN(IBBLE)
OBCF C? RET

;*** SET INTERRUPT I/O PROCESSING ***

OBDO F5 OPR$J: PUSH AF
OBDI AF XOR A ;*** SET ***
OB2 3C INC A ;f** INTERRUPT ***
OBD3 32 080F LD (INTFLG)tA ;*** FLAG **
OBD6 CD 0000* CALL MBM$ISET
09119 F1 POP AF
ODDA C9 RET

;*** SET POLLED I/0 PROCESSING ***
;f*** t ft , ft ft ** ft * ft ft f ft **

08DB FS OPR$K: PUSH AF
OBDC AF XOR A ;** RESET INTERRUPT **

Fiqure 17. MIDS Software (paqe 16 of 34).

177

MACRO-80 3.36 17-Mar-80 PAGE 1-25

OBDD 32 080F LD (INTPLG)tA ;I** FLAG
OBEO CD 0000* CALL MBM$ICLR
OBE3 F1 POP AF
OBE4 C9 RET

;*** PRINT MBM BUFFER ON CONSOLE ***
* N * * * *** ** * ** ****

OBE5 F5 OPRSP: PUSH AF
OBE6 E5 PUSH HL

OBE7 21 0810 LD HLJMBMBUF ;INIT BUF PNTR
OBEA CD OBF6 CALL P$PG ;*** PRINT 3 ***
OBED CD OBF6 CALL P$PG ;*** PAGES ***
OBFO CD OBF6 CALL P$PG ;*** OF DATA ***

OBF3 El POP HL
OBF4 Fl POP AF
OBF5 C? RET

*** PRINT AN NBM PACE ***

OBF6 F5 P$PG: PUSH AF
OBF7 C5 PUSH BC
OBF8 D5 PUSH DE

OBF9 06 04 LD B,4 ;SET HBR OF LINES TO BE PRINTED
OBFB OE 09 P$C1: LD CtPRTLH
OBFD 11 0100 LD DEtCRLF ;* SKIP TO NEXT LINE *
OCOO CD 0005 CALL CDOS
0C03 CD 0C30 CALL P$PLL ;PRINT A LONG LINE
0C06 10 F3 DJNZ P$C1 ;LOOP UNTIL DONE

OC08 3A 0002* LD A,(MBM$BCR+2) ;*** ERROR CORRECTION ***
OCOB E6 60 AND RCDBIT+ICDBIT ;*** ENABLED?
OCOD 20 OB JR NZPsC3 ;YES
OCOF OE 09 LD CPRTLH ;NOt * * N** ***
OCil 11 0100 LD DECRLF * SKIP TO NEXT LINE *
0C14 CD 0005 CALL CDOS * * * * * * * * * *
0C17 CD 0C26 CALL P$PSL ;PRINT A SHORT LINE

OCIA OE 09 P$C3: LD CtPRTLN ;*** SKIP LINE ***
OCiC 11 0100 LD DECRLF ;*** BETWEEN ***
OCIF CD 0005 CALL CDOS ;*N* PAGES **

Figure 17. NIDS Software (page 17 of 34),

178

MACRO-80 3.36 17-Mar-80 PAGE 1-26

0C22 Dl POP DE
0C23 Cl POP BC
0C24 F1 POP AF
0C25 C9 RET

*** PRINT A LINE OF 4 OR 16 BYTES

0C26 F5 P$PSL: PUSH AF
0C27 C5 PUSH BC
0C28 D5 PUSH DE
0C29 CD OC4D CALL PtBLI
OC2C DI POP DE
OC2D Cl POP BC
OC2E Fl POP AF
OC2F C9 RET

0C30 F5 P$PLL: PUSH AF
0C31 CS PUSH BC
0C32 D5 PUSH DE

0C33 CD OC4D CALL P$BLK ;PRINT 4 BYTES
0C36 CD OC4D CALL P$BLl ;PRINT 4 MORE

0C39 OE 02 LD CPRTCHR ;* * * * * * * *

OC3B IE 20 LD ESPACE ;t PRINT 8 *
OC3D CD 0005 CALL CDOS ;* BYTE SPACER *
0C40 CD 0005 CALL CDOS * * 0 * * * *

0C43 CD OC4D CALL P$BLK ;PRINT 4 BYTES
0C46 CD OC4D CALL P$BLK ;PRINT 4 MORE

0C49 Dl POP DE
OC4A Cl POP BC
OC4B F1 POP AF
OC4C C9 RET

OC4D 06 04 P$BLK: LD B,4 ;SET NBR OF BYTES IN BLOCK

OC4F OE 02 P$C7: LD CtPRTCHR
0C51 IE 20 LD EtSPACE ;* PRINT SPACER *

0C53 CD 0005 CALL CDOS * * * * * * *

0C56 7E LD Ap(HL) ;*w* PRINT ***
0C37 CD OD9B CALL PRT$BYT ;*** A BYTE **

OC5A 23 INC HL ;BUMP BUF PNTR
0C5B 10 F2 DJNZ P$C7 ;LOOP UNTIL DONE

OC50 CD 0005 CALL CDOS ;END OF BLOCK SPACER

0C60 C9 RET

Figure 17. MIDS Softmare (page 18 of 34).

179

7 AD-AIIS 072 AIR FORCE INS OF TECH WRIGHT-PATTERSON
AFB OH SCHOO--ETC _F/G 14/3

A- .02 AN INFLIGHT RECORDER PROTOTYPE FOR THE INFLIGHT PHYSIOLOGICAL D-ETClU)I FEB 82 R E HEISNERNCLASSIFIED AFIT/GCS/EE/82M-5 NLIIIIIIImImIu

EEEEEIIEEEEEEE
IIIIIIIII

IIIIIIIIIIII

NACRO-80 3.36 17-Mar-80 PACE 1-27

;**PRINT BNC ADDR REG ON CONSOLE *1

0C61 FS OPRQ: PUSH AF
0C62 C5 PUSH BC
0C63 D5 PUSH DE

0C64 OE 09 LD CtPRTLN
0C66 11 0459 LD DEtMSGQ ;B INC ADDRESS REG *

0C69 CD 0005 CALL CDOS

OC6C 3E OE LD AADRO ;n* SET BIC PHTR III

OC6E D3 29 OUT (BN$CND)tA ;*** TO ADDR REQ G 1*

0C70 DB 28 IN A,(BM$DATA) ;READ ADDR REG LSB

0C72 47 LD BA ;SAVE LSB FOR LATER PRINT

0C73 DD 28 IN A,(BN$DATA) ;READ ADDR REG MSD

0C75 CD OD9B CALL PRTSBYT ;PRINT MSD
0C78 OE 02 LD CPRTCHR ;* * * * * * * * *

OC7A 1E 20 LD EtSPACE ;* PRINT A SPACE *
OC7C CD 0005 CALL CDOS * * * * * * * *

OC7F 78 LD AtB ;RESTORE ADDR LSB
OC80 CD 0D9B CALL PRTSBYT ;PRINT LSB

0C83 D1 POP DE
0C84 Cl POP DC
0C85 Fl POP AF
0C86 C9 RET

PAGE

Figure 17. RIDS Software (page 19 of 34).

180

MACRO-80 3.36 17-Mar-80 PACE 1-28

'*1* * * t, * * *

;*** READ FIFO ***

0C87 FS OPR$R- PUSH AF

oCas C5 PUSH BC
0C89 ES PUSH HL

OC8A 3E 55 LD AtFILLER ;INIT FILL CHAR

OC8C 06 28 LD Bt40D ; LOOP CHTR

OC8E 21 0810 LD HLNBMBUF ; BUF PHTR

0C91 77 LD (HL)PA * * * * * * * *

0C92 23 INC HL ;* FILL THE BUF 0

0C93 10 FC DJNZ $-2

0C95 OE 09 LD CtPRTLH
0C97 11 0470 LD DEIDESMSG ;* NOTE: 1ST CHAR OF FIFO , I

OC9A CD 0005 CALL CDOS

OC9D 3E 00 LD AFIFO ;*** SET BMC PNTR

oC9F D3 29 OUT (BM$CMD)tA ;0* TO FIFO *1

OCAI 21 0810 LD HLMOMBUF ;INIT INPUT BUF PNTR

OCA4 06 28 LD Bt40D ; INPUT COUNT

OC6 OE 28 LD CBDMDATA ; FIFO INPUT PORT

OCA8 ED B2 INIR ;READ 40 BYTES FROM FIFO

OCAA CD 0D47 CALL PRT$BMS ;PRINT BMC STATUS

OCAD CD OBE5 CALL OPR$P ;PRINT FIFO BUF

OCBO El POP HL
OCB1 Cl POP BC
OCB2 Fl POP AF
0CB3 C9 RET

PACE

Figure 17. MIDS Software (page 20 of 34).

181

MACRO-80 3.36 17-Mar-80 PAGE 1-29

;*I* SET THE BMC REGISTER VALUES II

OCB4 F5 OPR$U-. PUSH AF
OCB5 C5 PUSH BC

OC96 CD ODC5 CALL SETBLR ;SET BLR REG VALUES
OC89 FE FF CP NEGI ;ERROR?
OCBD 28 IC JR ZU$RT ;YES
OCBD CD OE07 CALL SETENR ;SET ENABLE REG VALUE
OCCO CD OED7 CALL SETADR ;SET ADDR REG VALUES

;*** COMPUTE BLOCK XFER SIZE III
;*n* BLXSIZ PGSIZ * #PGS ***

OCC3 OE 40 LD Ct64D ;INIT MBM PAGE SIZE
OCCS 3A 0002* LD At(RBM$BMCR.2) ;GET BMC ENABLE REG VALUE
OCC8 E6 60 AND RCDBIT+ICDBIT ;HAS ERROR CORRECTION BEEN ENABLED?
OCCA 20 02 JR HZU$C5 ;YES
OCCC OE 44 LD C,68D ;NO, PAGE HAS 4 ADDITIONAL BYTES AVAIL
OCCE 3A 0000* UCz LD A,(NBM$BMCR) ;*I* GET NBR OF PAGES **
0CD1 47 LD BA ;*** TO BE XFERRED III

OCD2 AF XOR A
OCD3 81 UIC6. ADD AC ;ADD ONE MORE PAGE TO BLOCK SIZE
OCD4 10 FD DJHZ U$C6
OCD6 32 0000* LD (MBMSPSIZ)tA ;SET PAGE SIZE TO MATCH BMCR TABLE

OCD9 CD OCDF U$RT: CALL OPR$V ;DISPLAY RESULTS OF OPR$U

OCDC Cl POP BC
OCDD F POP AF
OCDE C9 RET

PAGE

Figure 17, MIDS Software (page 21 of 34).

182

MACRO-80 3.36 17-Mar-80 PACE 1-30

PRINT BMC REGISTER VALUES 0*

OCDF F5 OPR$V: PUSH AF

OCEO C5 PUSH BC
OCEI 95 PUSH DE

OCE2 OE 09 Lb CPRTLN ;******* A

OCE4 11 04CE LD DEtBLROMSG ;* BLR LSD z

OCE7 CD O005 CALL CDOS * * * * #

OCEA 3A 0000* LD A,(flBMSBNCR) ;*** PRINT BLR *1*

OCED CD O093 CALL PRTt9YT ;*** LSD VALUE *o

OCFO OE 09 LD CPRTLN
OCF2 11 04EO Lb DEPBLRIMSG ;* BLR NSB
OCF5 CD 0005 CALL CDOS
OCP8 3A 0001* LD A,(MM$BflCR+I) ;*** PRINT BLR '*1

OCF9 CD ODB CALL PRTt8YT ;*** ISD VALUE 0*

OCFE OE 09 Lb CPRTLN
0)0 11 04F2 LD DEENRMSC ;* ENABLE REG I

OD03 CD O00S CALL CDOS
OD06 3A 0002* LD A,(fBfSHBCR+2) ;*** PRINT ENR *1*

OD09 CD 0D9B CALL PRTSBYT ;*V* VALUE 1*

ODOC OE 09 LD CPRTLN * * * * *

ODOE 11 0504 LD DEADROMSG ;* ADDR REG LSB

ODII CD 0005 CALL CDOS ; * * * * *

OD14 3A 0003* LD A,(MBNtBMCR+3) ;*** PRINT ADDR 0*

OD17 CD 0998 CALL PRTSBYT ;*** REG LSD VALUE ***

ODIA OE 09 LD CPRTLN * * * * * * * *

ODIC 11 0516 LD DEpADRIMSG ;* ADDR REG MS9 *

OD1F CD 0005 CALL CDOS * * * * * *

0O22 3A 0004 LD A(N(BNSBMCR+4) ;*** PRINT ADDR *a*
0M25 CD OD9 CALL PRT$BYT ;0* REG ISB VALUE 1*1

0028 DI POP DE
0D29 Cl POP PC
OD2A Ft POP AF
OD29 C9 RET

PAGE

Fiqure 17. MI1S Software (paqe 22 of 34).

183

MACRO-80 3.36 17-1ar-80 PAGE 1-31

;*** WRITE FIFO *1*

OD2C F5 OPR$W: PUSH AF

01)2D C5 PUSH BC

OD2E E5 PUSH HL

OD2F 3E 00 LD A FIFO ;**# SET BMC PNTR *1

0D31 D3 29 OUT (BI$CMD),A ;*** TO FIFO ,,*

0D33 21 0810 LD HLNBIBUF ;INIT INPUT BUF PNTR

0D36 06 28 LD 9,40D ; INPUT COUNT

0D38 OE 28 LD CtBM$DATA ; FIFO INPUT PORT

OD3A ED B3 OTIR ;WRITE 40 BYTES TO FIFO

0D3C El POP HL

OD3D Cl POP BC

D3E Fl POP AF

OD3F C9 RET

;*** EXIT *l*

0D40 ED 78 0978 OPR$X: LD SP,(OLDSP) ;RESTORE OLD STACK

01)44 C3 0000 JP 0 ;RETURN TO CDOS
PAGE

Figure 17. MIDS Software (page 23 of 34).

184

RACRO-80 3.36 17-Mar-60 PACE 1-32

;N THIS ROUTINE PRINTS THE MBM CONTROLLER STATUS. IN
;* ADDITION, WARNINGS ARE PRINTED WHEN EITHER BUSYt OP
;E COMPLETE, OR OP FAIL STATUS IS SET. *

;N INPUT: N/A *

;N OUTPUT: APPROPRIATE CONSOLE MSG N

0D47 PRT$BIS:
0D47 F5 PUSH AF
0D48 C5 PUSH BC
0D49 D5 PUSH DE

OD4A CD 0000* CALL MBM$STAT ;READ MBM STATUS

OD4D CD 7F BIT BSYBPS A ;BUSY BIT SET?
OD4F 28 OA JR ZPRT$C3 ;NO
0D51 OE 09 LD CPRTLN ;** ********* *

0053 11 022E LD DEBSYWRN ;* PRINT BUSY WARNING N

0D56 CD 0005 CALL CDOS ; * * * * * * * * * * *

0D59 18 IA JR PRT$C7 ;IGNORE OTHER BITS

005B CB 77 PRT$C3: BIT OPCBPSA ;OPERATION COMPLETE?
OD5D 28 OA JR ZPRT$C4 ;NO
OD5F OE 09 LD CtPRTLN ;* * * * * ** * * * * * * *

0D61 11 023F LO DEtOPCMPL ;* PRINT OP COMPLETE MSG N

0D64 CD 0005 CALL CDOS ;* * * * * * * * * * *

0D67 18 OC JR PRT$C7 ;IGNORE OTHER BITS

0D69 C AF PRTtC4: BIT OPFBPStA ;OP FAIL SET?
OD68 2b va JR ZtPRT$C7 ;NO
016D OE 09 LD CPRTLN ;**** **** * * ** * *

OD6F 11 0257 LD DEOPERR ;* PRINT OP FAIL WARNTNG *
0D72 CD 0005 CALL CDOS ; *N*E*NN * N *N

0075 OE 09 PRT$C7: LD CPRTLN ;NNNNNNNN* NNN

0D77 11 029C LD DEtSTATHD ; PRINT 'STATUS = N

OD7A CD 0005 CALL CDOS ;NNNNNNNNNNN*

OD7D CD 0D98 CALL PRT$BYT

0D80 D1 POP DE
0D8 Cl POP BC

Figure 17. MIDS Software (page 24 of 34).

185

RACRO-80 3.36 17-Mar-80 PAGE 1-33

0082 Fl POP AF
0083 C9 RET

;a THIS ROUTINE PRINTS THE ADDRESS CONTAINED IN THE HL REG a
;a PAIR ON THE CONSOLE, ALONG WITH AN APPROPRIATE MESSAGE. *

;* INPUT: HL - MBM ADDR TO BE PRINTED I

;* OUTPUT: MBM ADDR IS PRINTED ON CONSOLE
HL - UNAFFECTED *

0084 PRTSAD:
0084 F5 PUSH AF
0085 C5 PUSH DC
0086 05 PUSH DE

0087 OE 09 LD CPPRTLN ;* * a*a*a*a** aa
0D89 11 04A9 LD DPtSTADDR ;* OPERATIDH STARTED AT ... *
OD8C CD 0005 CALL CDOS ;aaaaaaaaaaaaaaa

OD8F 7C LD AH ;*a *a*
0090 CD 0098 CALL PRTSBYT ;* PRINT *
0093 7D LD AL ;* MBM ADDR *
0D94 CD OD9B CALL PRTSBYT ;a * a a a a a

0D97 Dl POP DE
0098 Cl POP BC
0099 Fl POP AF
009A C9 RET

PAGE

Figure 17, MIDS Software (page 25 of 34).

186

LA~

MACRO-80 3.36 17-Mar-80 PAGE 1-34

;* THIS ROUTINE PRINTS THE HEX VALUE OF THE BYTE IN REG A *

;* INPUT: A - BYTE TO BE PRINTED *

;* OUTPUT: DIGIT IS PRINTED ON CONSOLE *

OD9B PRTSBYT:
OD9B C5 PUSH BC
OD9C D5 PUSH DE

OD9D 47 LD BtA ;SAVE BYTE
OD9E CD 3F SRL A ;*n SET-UP *1*
ODAO CB 3F SRL A ;II* HIGH III

ODA2 CB 3F SRL A ;*I ORDER ***
ODA4 CD 3F SRL A ;*n 4 BITS **
OD6 CD ODB2 CALL PRTSDIG
ODA9 78 LD AtB ;RESTORE BYTE
ODAA E6 OF AND OFH ;SET-UP LOW ORDER 4 BITS
ODAC CD ODB2 CALL PRTSDIG

ODAF DI POP DE
ODBO Cl POP BC
ODBI C9 RET

;*n PRINT ONE DIGIT ***

OD92 PRTSDIG:
OD92 FE OA CP OAH ;IS HEX DIGIT = 0 - 9?
OD94 30 04 JR NCDIGSC5 ;NO
ODB6 F6 30 OR 30H ;CONVERT TO ASCII 0 - 9
ODDS 18 04 JR DIG$PT
ODRA D6 09 DIG$C5: SUB 9 ;*II CONVERT TO VI*

ODBC F6 40 OR 40H ;In ASCII A - F III
ODBE OE 02 DIGSPT: LD CtPRTCHR
ODCO 5F LD EA ;* PRINT THE DIGIT *
ODCl CD 0005 CALL CDOS ;II*** ***
ODC4 C9 RET

PACE

Figure 17. MIDS Softmare (page 26 of 34).

187

MACRO-80 3.36 17-Mar-80 PAGE 1-35

;V THIS ROUTINE SETS THE BMC ADDR REG VALUES LOCATED WITHIN V

;V THE MBM DRIVER MODULE. *

;V INPUT: N/A
;* *,

;* OUTPUT: BMC BLOCK LENGTH REG VALUES ARE SET *

A: -1, IF INVALID INPUT BY USER *

NX'??' UDETERMINEDt IF (SEMI-) VALID V
INPUT BY USER *

ODC5 SETBLR:
ODC5 C5 PUSH BC
ODC6 D5 PUSH DE

ODC7 OE 09 LD CPRTLN ;VVV PROMPT USER VVV

ODC9 11 02A8 LD DEtBLIMSG ;VVV FOR HBR OF PAGES VVV

ODCC CD 0005 CALL CDOS ;VVV PER I/0 BLOCK *

ODCF OE OA LD CRDLN ;* V V VV

ODDI 11 08DC LD DEtCONFD ;V AWAIT RESPONSE V

ODD4 CD 0005 CALL CDOS ;VVVVVVVVVV

ODD7 3A 08DD LD A,(CONBF+1) ;GET NBR OF CHAR READ
ODDA FE 00 CP ZERO ;WAS IT 0? (IMPLIES CARRAIGE RETURN)
ODDC 28 26 JR ZSBSRT ;YES, DO NOT CHANGE BLR VALUES
ODDE FE 01 CP ONE ;WAS IT 1?
ODEO 20 18 JR NZSD$ERR ;NO

ODE2 3A OaDE LD A,(CONBF+2) ;VVV CONVERT CHAR JUST *V*
ODE5 CD OF7D CALL ASB$CONV ;VVV READ TO BINARY *
ODE8 FE FF CP NEGI ;INVALID INPUT?
ODEA 28 OE JR ZtSBtERR ;YES
ODEC FE 04 CP FOUR ;INPUT (z 3 (CURRENT S/U LIMIT)
ODEE 30 OA JR NCSD$ERR ;NO

ODFO 32 000)* LD (MDMtBMCR),A ;SET BLR LSB
ODF3 3E 10 LD AtIOH ;VVV SET BLR MSB FOR *

ODF3 32 0001* LD (MBM$BMCR+1),A ;VVV 1 BUBBLE XFER VVV

ODF8 18 OA JR SBtRT

ODFA OE 09 SBtERR: LD CtPRTLH VVVVVVVV

ODFC 11 020D LD DEtINPERR ;V INPUT ERROR V

Fiqure 17. MIDS Software (paqe 27 of 34).

188

MACRO-80 3.36 17-Mar-80 PAGE 1-36

ODFF CD 0005 CALL CDOS
OE02 3E FF LD AINEG1 ;SET ERROR FLAG

OE04 D1 SBSRTx POP DE
OEOS Cl POP BC
0E06 C9 RET

11

;* THIS ROUTINE SETS THE BMC ENABLE REG VALUES LOCATED WITHIN N

;N THE MBA DRIVER MODULE. *

;N INPUT% N/A

;N OUTPUT: BMC ENABLE REG VALUES ARE SET *

OE07 SETENR:
OE07 F5 PUSH AF
OE08 C5 PUSH BC
OE09 D5 PUSH DE
OEOA E5 PUSH HL
OEOB 06 00 LD BtZERO ;MBM REINIT NOT REQUIRED FLAG

OEOD 3A 0002* LD A(NBMtBMCR+2) 1** GET INITIAL N*N

OE1O 67 LD HA ;NNN ENABLE REG VALUE *
0E11 3A 080F LD A,(INTFLG) ;NNN INTERRUPT
OE14 A7 AND A ; 1*N I/O ENABLED? ***
0E15 CA 0E52 JP ZjSE$C3 ;NO

0E18 OE 09 SE$CO: LD CPRTLN ;NNNNNNNNNNNN

OElA 11 02CC LD DEjEN1MSG N NORMAL INTERRUPTS? N

OE1D CD 0005 CALL CDOS ;N * N N N N N N N N N
OE20 OE 01 LD CtRDCHR ;NNN GET USER NNN
0E22 CD 0005 CALL CDOS ;NNN RESPONSE NNN

0E25 FE OD CP CR ;USE OLD SETTING?
0E27 28 OC JR ZSESCI ;YES
OE29 CD 84 RES INBPStH ;CLEAR NORMAL INT
OE2B FE 4E CP NO ;DISABLE NORMAL INT?
OE2D 28 06 JR ZtSEtCI ;YES
OE2F FE 59 CP YES ;ENABLE NORMAL INT?
OE31 20 E5 JR NZSESCO ;NOT SURE, TRY AGAIN

Figure 17. RIDS Software (page 28 of 34).

189

NACRO-80 3.36 17-Mar-80 PAGE 1-37

CE33 CD C4 SET INBPSH ;SET NORMIAL INT'S

OE35 OE 09 SE$CI: LD CPRTLN
0E37 11 02F8 LD DEEN2MSG ;* ERROR INTERRUPTS? *

OE3A CD 0005 CALL CDOS
OE3D OE 01 LD CRDCHR ;** GET USER ***

OE3F CD 0005 CALL CDOS ;*** RESPONSE ***

CE42 FE OD CP CR ;USE OLD SETTING?

CE44 28 OC JR ZSESC3 ;YES

CE46 CD SC RES IEBPSH ;CLEAR ERROR INT

0E48 FE 4E CP NO ;DISABLE ERROR INT?

OE4A 28 06 JR ZSESC3 ;YES

0E4C FE 59 CP YES ;ENABLE ERROR INT?

OE4E 20 E5 JR NZSEtC1 ;NOT SURE, TRY AGAIN

CSO CB CC SET IEBPStH ;SET NORMAL INT'S

CE52 OE 09 SE$C3z LD CPRTLN
0E54 11 0323 LD DEE3MSG ;* MAX XFER RATE? *

CE57 CD 0005 CALL CDOS * * * * * * *

OESA OE 01 LD CRDCHR ;*** GET USER ***

OE5C CD 0005 CALL CDOS ;*** RESPONSE ***

OE5F FE OD CP CR ;USE OLD SETTING?

CR61 28 OC JR ZSESC5 -YES

CR63 CD 9C RES XFRBPStH ;SET MAX XFER RATE

CE65 FE 59 CP YES ;MAX XFER RATE?

CE67 28 06 JR ZSE$C5 ;YES, (0 BIT IMPLIES MAX RATE)

CE69 FE 4E CP NO ;MIN XFER RATE?

OE60 20 ES JR HZSE$C3 ;NOT SURE, TRY AGAIN

OE6D CD DC SET XFRBPSH ;SET MIN XFER RATE

O6 OE 09 SE$C5: LD CPRTLN ;* * * * * * * * * * * 0 * *

CE71 11 034E LD DEEN5MSG ;* ENABLE READ CORRECTED?

CE74 CD 0005 CALL CDOS
CE77 OE 01 LD CRDCHR ;*** GET USER ***

CE79 CD 0005 CALL CDOS ;*N* RESPONSE ***

OE7C FE OD CP CR ;USE OLD SETTING?

OTE 28 14 JR ZtSE$C6 ;YES

OE80 FE 59 CP YES ;HO, ENABLE RCD?

CE82 20 08 JR mZtSEsC53 ; NO

CE84 CB EC SET RCDUPSH ; YES, SET RCD BIT

CE86 CD F8 SET 7t SET MBM REINIT REGUIRED

CRS C8 B4 RES ICDBPSH ;CLR ICD--ONLY 1 ERROR CORRECT ALLOWED

CE8A 18 33 JR SESEND

Fiqure 17. MIDS Software (paqe 29 of 34).

190

MACRO-80 3.36 17-Mar-80 PAGE 1-38

OE8C FE 4E SESC53: CP NO ;DISABLE RCD?

0E8E 20 DF JR NZtSE$C5 ;NOT SURE, TRY AGAIN

OE90 CB AC RES RCDBPSH ;YESt CLEAR RCD BIT

0E92 CB F8 SET 7,B ;SET MBM REINIT REQUIRED

0E94 CB 6C SE$C6: BIT RCDBPSH ;RCD SET?

0E96 28 04 JR ZtSE$C61 ;No

0E98 CB B4 RES ICDBPSH ;YESt ONLY ONE ERROR CORRECT ALLOWED

OE9A 18 23 JR SE$END

OE9C OE 09 SE$C61: LD CtPRTLN
OE9E 11 0379 LD DEEN6MSG ;* ENABLE INTERNAL CORRECTION? *

OEA1 CD 0005 CALL CDOS * * * * * * * * * * * * * *

OEA4 OE 01 LD CRDCHR ;*** GET USER ***

OEA6 CD 0005 CALL CDOS ;*** RESPONSE **

OEA9 FE OD CP CR ;USE OLD SETTING?

OEAB 28 12 JR ZSE$END ;YES

OEAD FE 59 CP YES ;NOt ENABLE ICD?

OEAF 20 06 JR NZjSE$C63 ; NO

OEBI CB F4 SET ICDBPStH ; YES, SET ICD BIT

OEB3 CB F8 SET 71B SET MBM REINIT REQUIRED

0EB5 18 08 JR SESEHD

OEB7 FE 4E SE$C63: CP NO ;DISABLE ICD?

0E89 20 El JR NZISE$C61 ;NOT SURE, TRY AGAIN

OEBB CB B4 RES ICDBPSH ;CLEAR ICD BIT

OEBD CB F8 SET 7tB ;SET MBM REINIT REQUIRED

OEBF 7C SE$END: LD AH ;*** SET ENABLE REG VALUE ***

OECO 32 0002* LD (MBM$BCR+2)tA ;*** IN BMC REG TABLE ***

OEC3 CB 78 BIT 7tB ;MUST MBM BE REINIT'ED

OEC5 28 OB JR ZtSESRT ;NO

OEC7 OE 09 LD CPRTLN ;YES, *****N*****

0EC9 11 03A4 LD DEREIMSG * REINITIALIZING MBM *

OECC CD 0005 CALL CDOS

OECF CD OA85 CALL OPRSI

OED2 El SESRT: POP HL
OED3 DI POP DE
OED4 Cl POP BC

OED5 Fl POP AF
OED6 C9 RET

PAGE

Figure 17. MIDS Software (page 30 of 34).

191

MACRO-80 3.36 17-Mar-80 PAGE 1-39

;* THIS ROUTINE CREATES AN MEN ADDR FROM USER RESPONSES f

;t TELLING WHICH BUBBLE AND WHAT PACE ARE REQUIRED. THIS f

;f GENERATED VALUE IS SAVED IN THE BMC ADDR REG SAVE AREA f

;f WITHIN THE MBM MODULE. *

;* INPUT: N/A f

;* OUTPUT: B3M ADDR REG VALUES ARE SET
A -it IF INVALID INPUT BY USER

X'??' UNDETERMINED, IF (SEMI-) VALID
INPUT BY USER

OED7 SETADRR:
OED7 C5 PUSH BC
OED8 D5 PUSH DE
OED9 E5 PUSH HL

OEDA OE 09 LD CtPRTLN ;ftt PROMPT USER ftf
OEDC 11 03EO LD DEMSG4$1 ;f*t FOR BUBBLE itt

OEDF CD 0005 CALL CDOS NUMBER ft*

OEE2 OE OA LD CRDLN * * * * * *
OEE4 11 08DC LD DEtCOHBF ;t AWAIT RESPONSE f
OEE7 CD 0005 CALL CDOS ;* * * * * * * *

OEEA 3A 0O8DD LD A,(CONBF+I) ;GET HBR OF CHAR READ
OEED FE 00 CP ZERO ;WAS IT 0? (IMPLIES CARRAIGE RETURN)
OEEF 20 08 JR NZISA$C2 ;HO
OEF1 3A 0004* LD A,(MBM$BMCR+4) ;ftt INIT BUBBLE NBR FOR itt

OEF4 E6 FO AND OFOH ;efe LATER CONCATENATION tit
OEF6 67 LD HtA WITH PAGE HBR itt
OEF7 18 17 JR SA$C3
OEF9 FE 01 SA$C2: CP ONE ;NBR OF CHAR READ z1?
OEFB C2 OF67 JP HZSA$ERR ;NO

OEFE 3A 08DE LD At(CONBF+2) ;*t CONVERT DIGIT JUST *f,
OFOI CD OF7D CALL AtBSCONV ;,ft READ TO BINARY tit

OF04 FE FF CP NEGt ;INVALID INPUT?
OF06 CA 0F67 JP ZPSA$ERR ;YES

OF09 67 LD HtA ;ttftftftftttttt*
OFOA C8 24 SLA H ;* SET BUBBLE HER TO *

Figure 17. RIDS Software (page 31 of 34).

192

ACRO-80 3.36 17-Mar-80 PACE 1-40

OFOC CD 24 SLA H ;* IBM ADDR REG FORMAT *
OFOE CB 24 SLA N # , * * * * * * ,

OFIO OE 09 SASC3% LD CPRTLN ;*** PROMPT USER ***

0F12 1 03FC LD DE^0SC4$2 ;t,* FOR PAGE *'*

OF15 CD 0005 CALL CDOS ;** NUMBER ,*

OF18 OE OA LD CRD, * * * * * *

OFIA 11 O8DC LD DEtCONlF ;, AWAIT RESPONSE I

OFID CD 0005 CALL CDOS ; , * * * * * *

OF20 3A 0O8DD LD A (CONBF+I) ;GET NBR OF CHAR READ

0F23 FE 00 CP ZERO ;WAS IT 0? (IMPLIES CARRAIGE RETURN)

0F25 20 OB JR NZSA$C4 ;NO

0F27 3A 0004* LD Ap(N$BMCR+4) ;, , * * ** * * * * * * *

OF2A E6 OF AND OFH ;, CONCATENATE BUBBLE NBR *

OF2C B4 OR H ;* WITH 4 ASB'S OF PAGE NBR *

OF2D 32 0004* LD (BM$BRCR+4),A , ***,,* ,, ,,
OF30 18 3F JR SA$RT
0F32 FE 03 SA$C4: CP THREE ;WAS IT THREE?

0F34 20 31 JR NZSA$ERR ;NO

0F36 3A ODE LD A,(CONBF+2) ;o* CONVERT MOST SIGNIFICANT **

0F39 CD OF7D CALL ABCOHV ;*** DIGIT (MSD) TO BINARY **

OF3C FE 08 CP 8 ;INVALID DIGIT INPUT (IE,) 7)?

OF3E D2 0F67 JP HCSA$ERR ;YES
OF41 B4 OR H ;*** SET NSD OF

0F42 67 LD HA ;MO* EN PAGE HER in

0F43 3A 08DF LD A,(CONBF+3) ;*** CONVERT NEXT ***

0F46 CD OF7D CALL ABCONV ;* DIGIT TO BINARY **

OF49 FE FF CP NEGI ;INVALID INPUT?

OF4B 28 IA JR ZSA$ERR ;YES

OF4D 6F LD LA
OF4E CD 25 SLA L ;* SET NEXT *

OF50 CD 25 SLA L ;* MSDOF MBM

0F52 CD 25 SLA L ;* PAGE NBR *

0F54 CD 25 SLA L * * * * * *

0F56 3A 08E0 LD A,(CONBF+4) ;*** CONVERT LSD **

0F59 CD OF7D CALL ABCONV ;*** TO BINARY ***

OFSC FE FF CP NEGI ;INVALID INPUT?

OF5E 28 07 JR ZSA$ERR ;YES

OF60 85 OR L ;*** SET LSD OF

OF61 6F LD LA ;** MDM PAGE NBR III

0F62 22 0003* LD (NBMSBCR+3),HL ;SET BMC ADDR REG VALUES

0F65 18 OA JR SASRT

Fiqure 17. MIDS Software (paqe 32 of 34).

193

MACRO-80 3.36 17-Mar-80 PAGE 1-41

0F67 OE 09 SASERR: LD CPRTLN
0F69 11 020D LD DEjIHPERR ;* PRINT INVALID INPUT MSG *

OF6C CD 0005 CALL CDOS
OF6F 3E FF LD ANEG1 ;SET INVALID INPUT FLAG

0F71 OE 02 SA$RT: LD CpPRTCHR * * * * * * , , * *
0F73 1 OOOA LD DELF ;R MAKE OUTPUT PRETTY *
0F76 CD O5 CALL CDOS
0F79 El POP HL
OF7A Dl POP DE
OF7B Cl POP BC
OFTC C9 RET

* * *m *E * * * §* § * * * I * I I I I I I I * I ** I * I

;* THIS ROUTINE CONVERTS THE ASCII CHARACTER FOUND IN REG A *
;I TO A BINARY DIGIT. *

;I INPUT: A - ASCII CHAR TO BE CONVERTED

;* OUTPUT: A CONVERTED DIGIT t IF INPUT i0S VALID *
- -l IF INVALID INPUT BY USER

OFTD ABCONVi
OF7D FE 47 CP 'F'+I ;*** FILTER SOME III

OF7F 30 09 JR NCABCE ;*I* BAD INPUTS **
OF81 FE 3A CP '9'+l
0F83 38 02 JR CAS8$C5 ;* CONVERT ASCII *
0F85 D6 07 SUB 7 ;* TO HEXIDECIMAL
0F87 E6 OF ABC5: AND OFH ;** * **

0F89 C9 RET

OF&A 3E FF ABCE: LD AINEGI ;SET INVALID DIGIT FLAG
OF8C C? RET

END START

Fiqure 17. MIDS Software (page 33 of 34)#

194

MACRO-80 3.36 17-Mar-80 PACE S

Mlacros:

Symbols:
A$BSC5 0F87 A$BSCE OF8A ABCO 0F7D AIRT 0320

ADRO 000E ADROMS 0504 ADRI OOOF ADRIMS 0516

BLIMSC 02A8 BLR0MS 04CEB LRIMS 04E0 BMtSCMD 0029

DBflDAT 0028 BSYBPS 0007 BSYWRN 022E DIJFLEN 00CC
CDOS 0005 CMDERR O1EA CONDF OSDC CONTIN 097A

CON'J12 0399 CR QOOD CRLF 0100 DESMSG 0470
DIGSC5 ODRA DIGSPT ODBE DMABPS 0002 EN1MS9 02CC
EN2NlSG 02F8 EN3MSG 0323 EN5MSG 034E EN6MSG 0379
ENRMSG 04F2 FIFO 0000 FILLER 0055 FOUR 0004
GETSOP 0982 I$!RR OBAC I$LP5 OBA? I$RT 0B84

ICDSIT 0040 ICDBPS 0006 IEBPS 0001 INBPS 0000
INPERR 020D IN!FLG 080F IPDPS 0007 LF OOOA
MBM$AB 0303* rBM$BM 0F63* MDM$FF 0336* M8I'$IC OBEI*

NMIIN 0A87* MBM$IS 0307* MBM$PS OCD1* M8MSPU 083F*
flBMSRC 092D* MBflSRE OAA4* MBMSRF 0302* I'lDI$RS OAD4I
MBMSRX OAE1* MBM$RZ 0324* MBM$SR 0B48* MBM$ST 0D49*
MBMSUB OA7D* MBM$WR OABD* MBM$WS 0313* MBM$WX OAEF*

MMI$WZ OAF9* MBMBUF 0810 MENU 0528 MSC4$1 03E0

l'S4$2 03FC MSGISI 041E MSGIS2 043D MSCO 045B
NECI FFFF NO 004E O4$RT OAD? OLDSP 0978

ONE 0001 OPCBPS 0006 OPCMPL 023F OPERR 0257

OPFBPS 0005 OPR$0 0A77 OPR$1 OA85 OPR$2 OABE
OPRS3 0AB2 OPR$4 OACD OPR$5 OADB OPR$6 OAE9
OPR$7 OAF7 OPR$8 0300 OPR$9 0B09 OPR$A 0312
OPR$D 0B22 OPRSC 0323 OPRSD 0B34 OPR$E 033D
OPR$F 0346 OPR$H 094F OPR$I OB5E OPR$J 0930
OPRSiC 03DB OPRSP OBE5 OPRSQO C61 OPRSR 0C87

OPR$U OCB4 OPR$V OCDF OPR$W OD2C OPR$X 0D40

PSELI OC4D PSC1 ODFB P$C3 OC1A P$C7 OC4F

P$PG 03F6 P$PLL 0C30 P$PSL 0C26 PREMSG 0103
PROMPT 0100 PRT$DN 0D47 PRT$BY OD9B PRT$C3 OD5B

PRT$C4 0D69 PRT$C7 0D75 PRT$DI 0032 PRTCHR 0002

PRTEND 0024 PRTLN 0009 PRTSAD 0D84 RCDBIT 0020
RCDBPS 0005 RDCHR 0001 RDLN OOOA REIMSC 03A4

SA$C2 OEF9 SA$C3 OF10 SA$C4 0F32 SA$ERR 0F67

SA$RT 0F71 SB$ERR ODFA SB$RT 0E04 SESCO 0E18

SE$Ci 0E35 SESC3 0E52 SESC5 OE6F SESC53 OESC
SE$C6 OE94 SE$C61 0E9C SE$C63 0537 SE$END OEBF
SESRT OED2 SErADR OED7 SETBLR ODC5 SETENR 0E07

SPACE 0020 STACK 0978 STADDR 00A9 START 092E
9")THD 029C THREE 0003 TWO 0002 USC5 0CCE

L,,. OCD3 U$RT 0CD9 WJ3LBPS 0004 XFR3PS 0003
YES 0059 ZERO 0000

No Fatal error(s)

Figure 17. MIDS Software (page 34 of 34).

195

MACRO-80 3.36 17-Mar-80 PAGE 1

.Z80
0000' CSEG

;TITLE: MBN - MAGNETIC BUBBLE MEMORY DRIVERS
;AUTHOR: CAPT R E MEISHER
;DATE:
;SYSTEM: CROMEMCO Z2D / CDOS 2.36
;SETUP: THIS PROGRAM IS ASSEMBLED AS MBM.RELt FOR LINKING

WITH USER PROGRAMS REQUIRING MBM DRIVERS.
;DESCRIPTION: THIS PROGRAM PROVIDES SUBROUTINES FOR DRIVING

INTEL 7110 MAGNETIC BUBBLE MEMORIES (MBM) IN BOTH
THEIR POLLED AND INTERRUPT I/O CONFIGURATIONS,
AVAILABLE SUBROUTINES ARE:

ENTRY MBM$STAT ;GET CONTROLLER STATUS
ENTRY MBNSICLR ;RESET SYSTEM FOR POLLED I/0
ENTRY MB$ISET ;SET SYSTEM FOR INTERRUPT I/0
ENTRY MBMSWBRM ;WRITE BOOTLOOP REG MASKED
ENTRf MBMSIHIT ;MBM INITIALIZATION
ENTRY MBM$READ ;READ I PAGE
ENTRY MBM$RXBR ;READ BOOTLOOP REG
ENTRY MBM$WRIT ;WRITE I PAGE
ENTRY MBM$RSEX ;READ SEEK
ENTRY MBM$WXBR ;WRITE BOOTLOOP REG
ENTRY MBMSWZBL ;WRITE BOOTLOOP
ENTRY MBI RFSA ;READ PSA STATI
ENTRY MBM$ABRT ;ABORT
ENTRY MBM$SRES ;SOFTWARE RESET
ENTRY MBM$WSEY ;WRITE SEEK
ENTRY MBM$RZBL ;READ BOOTLOOP
ENTRY MBM$RCDT ;READ CORRECTED DATA
ENTRY MBM$FFRE ;FIFO RESET
ENTRY MBMtPURG ;MBM PURGE

COMMAND DATA VARIABLES ARE:
ENTRY MBM$BMCR ;BMC REG VALUES
ENTRY MBM$PSIZ ;MBM PAGE SIZE OF XFER

PAGE

Figure 18. MBN Software (page 1 of 32).

196

MACRO-80 3.36 17-Mar-80 PAGE 1-1

;OPERATIONz

CONTROLLER (BMC) STATUS REGISTER DEFINITION

BIT 0 - FIFO READY
BIT 1 - PARITY ERROR

BIT 2 - UNCORRECTABLE ERROR
BIT 3 - CORRECTABLE ERROR
BIT 4 - TIMING ERROR
BIT 5 - OP FAIL
BIT 6 - OP COMPLETE
BIT 7 - BUSY

CONTROLLER (BMC) REGISTER DEFINITIONS
REG NAME

DEFINITION

A UTILITY
NOT USED BY MBM

B BLOCK LENGTH (LSD)
C BLOCK LENGTH (MSB)

BIT 0-10 - NUMBER OF PAGES TO BE X-FERRED
BIT 11 - NOT USED
BIT 12-15 - NUMBER OF FSA CHANNELS

D ENABLE
BIT 0 - INTERRUPT ENABLE (NORMAL COMPLETION)
BIT I - INTERRUPT ENABLE (ERROR)
BIT 2 - DMA ENABLE
BIT 3 -MAX FSA TO BMC XFER RATE
BIT 4 - WRITE BOOTLOOP ENABLE

BIT 5 - ENABLE 'READ CORRECTED DATA (RCD)'
BIT 6 - ENABLE 'INTERNALLY CORRECTED DATA (ICD)'
BIT 7 - ENABLE PARITY INTERRUPT

E ADDRESS (LSB)
F ADDRESS (MSB)

BIT 0-10 - STARTING ADDRESS WITHIN EACH MBM
BIT 11-14 - MBM SELECT
BIT 15 - NOT USED

PAGE

Figure 18. MBM Software (page 2 of 32).

197

MACRO-80 3.36 17-Mar-80 PAGE 1-2

;************* CONSTANTS **************** **********

0000 ZERO EOU 0
0001 ONE EQU 1
O0OD CR EaU ODH ;ASCII CARRAIGE RETURN
OOOA LF EQU OAH ;ASCII LINE FEED
0038 INT$RST EOU 38H ;Z80 INTERRUPT RESTART ADDR (IM:I)
00C3 JP$OPCD EaU OC3H ;OP CODE OF UNCONDITIONAL JUMP
0016 HALFUL EaU 22D ;BYTES AVAIL AT HALF FULL INTERRUPT

;CDOS SYSTEM CALL PARAMETERS

0005 CDOS EQU O005H ;CDOS ENTRY POINT
0009 PRTLN EOU 9 ;PRINT BUFFER LINE ON CONSOLE
0024 PRTEND EOU '$;END PRINT BUFFER MARKER

;MBM I/0 PORT ASSIGNMENTS

0028 BM$DATA EOU 28H ;MBM DATA (I/O)
0029 BN$CMD EGU 29H ;MBM COMMAND (OUT ONLY)
0029 BM$STAT EQU 29H ;MBM STATUS (IN ONLY)

;REGISTER ADDRESS COUNTER (RAC) ASSIGNMENTS

O0OB BLRO EQU OBH ;BLOCK LENGTH REGISTER (LSB)
O00C BLR1 EQU OCH ;BLOCK LENGTH REGISTER (MSB)
O0OD ENR EQU ODH ;ENABLE REGISTER
OOOE ADRO EU OEH ;ADDRESS REGISTER (LSB)
OOF ADR1 EQU OPH ;ADDRESS REGISTER (MSB)
0000 FIFO EOU OOH ;FIFO I/O REGISTER

;MBM CONTROLLER (BMC) STATUS BIT POSITIONS

0000 FFRBPS EOU 0 ;(LSB) - FIFO READY
0002 UNCBPS EaU 2 UNCORRECTABLE ERROR
0003 CORBPS EGU 3 CORRECTABLE ERROR
0004 TIMBPS EOU 4 TIMING ERROR
0005 OPFBPS EOU 5 OP FAIL
0006 OPCBPS ECU 6 OP COMPLETE
0007 BSYBPS EOU 7 ;(MSB) - BUSY

;NBM CONTROLLER ENABLE REG BIT POSITIONS

0000 INIPS EaU 0 ;(LSB) - INTERRUPT ENABLE (NORMAL)
0001 IEBPS EQU I INTERRUPT ENABLE (ERRORS)
0002 DMABPS EaU 2 DNA ENABLE

Fiqure 18. MBM Software (paqe 3 of 32).

198

MACRO-80 3.36 17-Mar-80 PACE 1-3

0003 XFRBPS EQU 3 flAX FSA TO BMC XFER RATE
0004 WBLBPS EQU 4 ENABLE BOOTLOOP WRITE
0005 RCDBPS EOU 5 ENABLE READ CORRECTED DATA
0006 ICDBPS EQU 6 ENABLE INTERNALLY CORRECT DATA
0007 IPBPS EOU 7 ;(MSB) - INTERRUPT ENABLE (PARITY)

;MBM CONTROLLER ENABLE REG BIT SETTINGS

0001 INBIT EOU 01H ;NORMAL INTERRUPTS
0002 IEBIT EOU 02H ;INTERRUPT ON ERRORS
0080 IPBIT EOU 80H ;INTERRUPT ON PARITY ERROR

;MBi COMMAND CODES

0010 BM$WBR EOU 1OH ;WRITE BOOTLOOP REGISTER MASKED
0011 BM$INT EQU 11H ;INITIALIZE
0012 BM$RD EOU 12H ;READ BUBBLE DATA
0013 BM$WR EOU 13H ;WRITE BUBBLE DATA
0014 BN$RSK EOU 14H ;READ SEEK
0015 BMSRBR EOU 15H ;READ BOOTLOOP REGISTER
0016 BMSWBR EOU 16H ;WRITE BOOTLOOP REGISTER
0017 BM$WBL EOU 17H ;WRITE BOOTLOOP
0018 BMSRFSA EOU 18H ;READ FSA STATUS
0019 BMSABT EQU 19H ;ABORT
OOtA BM$WSK EQU 1AN ;WRITE SEEK
001B BM$RBL EOU 1BH ;READ BOOTLOOP
001C BM$RCD EOU ICH ;READ CORRECTED DATA
OOiD BMtFRE EOU IDH ;RESET FIFO
O01E BMSPRG EOU 1EH ;MBM PURGE
O01F BMSSRE EOU IFH ;SOFTWARE RESET
0020 BM$RES EOU 20H ;RESET STATUS REG AND INTERRUPTS

;CONSOLE MESSAGES

0000' 20 20 3C 3C SUPMSG: DB ' (((COMMAND NOT IMPLEMENTED)))',PRTEND
0022' 20 20 2A 2A RDERR: DB ' w ERROR *** READ PAST END OF PAGE 'tPRTEND
0049' OD OA 09 3C ERRMSG. DB CRLF,' (((INTERRUPT GENERATED BY ERROR)))',PRTEND
0071' OD OA 09 09 WHONOZ: DB CRLF,' *** UNDETERMINED ERROR ***'tPRTEND

*** WHONOZ IS A MSG THAT IS OVER-WRITTEN BY I OF ***
**i THE 3 FOLLOWING NSGS ONCE ERROR IS DETERMINED in

0090' OD 09 09 2A UNCERR% DB CR,' *** UNCORRECTABLE ERROR in'

OOAE' OD OA 24 DB CRLFPRTEND
00B' OD 09 09 2A CORERRz DB CR,' iii CORRECTABLE ERROR iii"

OOCF' OD OA 24 DB CRLFPRTEND
OOD2' OD 09 09 2A TIMERR: DB CR,' iii TIMING ERROR *n'

Figure 18. MBM Software (page 4 of 32).

199

RACRO-80 3.36 17-Mar-80 PAGE 1-5

OOFO' OD OA 24 DB CRLFPRTEND
0OF3' OD OA OPCMSG: DOB CRLF
0OF5 09 3C 3C 3C DB (((PREVIOUS OPERATION HAS COMPLETED >>)'
011E' 00 OA 24 DO CRpLFPRTEND
0121' 09 20 3C 3C RSTMSGz DB I (((STATUS AND INTERRUPT ARE RESET)'
0149' O OA 24 Do CRLFtPRTEND
014C' 20 20 3C 3C INIMSG: DB I (((SYSTEM INITIALIZED FOR INTERRUPT I/O))'
017A' OD OA OA DB CRLFILF
017D' 43 41 55 54 DB 'CAUTION: IN INTERRUPT MODE, THE ONLY VAL.D COMMANDS
01B2' 41 52 45 3A DB 'ARE:'jCRLF
01B8' 09 09 32 20 DB ' 2 - READt',CRLF
OC5' 09 09 33 20 DB ' 3 - WRITE, AND',CRLF
0D7' 09 09 54 48 DB THOSE GREATER THAN F.',CRILF
OIFO' 09 20 20 57 DB WITH THE EXCEPTION OF 2 AND 3, ALL COMMANDS
021F' 49 4E 20 54 B 'IN THE',CRLF
0227' 09 20 20 52 DB ' RANGE OF 0 THRU F GIVE UNPREDICTABLE
024F' 52 45 53 55 DB 'RESULTS.'
0257' OD OA OA 24 DB CRLFLFPRTEND
025B' 20 20 3C 3C REIMSG: DB ' <((SYSTEM REINITIALIZED FOR POLLED I/O)))',PRTEND
0289' 09 3C 3C 3C FFRMSG: DB (((RESETTING FIFO)))',CRLFtPRTEND

;0*****I*~***** END CONSTANTS ************'*******************

;**W****I****** VARIABLES **************************fl,****

02A3' 00 RDSIZ: DB 0 ;NBR OF BYTES LEFT TO BE XFERRED
;DURING READ

02A4" 00 WRSIZ: DB 0 ;NBR OF BYTES LEFT TO BE XFERRED
;DURING WRITE

02A5' BUFPTR: DS 2 ;PNTR FOR TRACKING A USERS I/O BUFFER
02A7' 00 INTFLG: DB 0 ;INTERRUPT ENABLED FLAG
02A8' INTSAV: DS 3 ;SAVE OLD INTERRUPT RESTART ADDR
0005 BRLEN EOU 5 ;LENGTH OF MBM$BMCR
02AB' NBMSBMCR: ;BMC REG VALUES (INITIALLY SET AS SPECIFIED BELOW)
02AB' 01 DB 01H ;BLRO - *** 1PAGE, I CHANNEL ***
02AC' 10 DB IOH ;BLRl - XFER
02AD' 08 DB 08H ;ENR - LOW FRED XFER
02AE' 00 DB OOH ;ADRO - I** 1ST PAGE OF *
02AF' 00 DB OH ;ADR1 - * 1ST BUBBLE ***
020' "BMPSIZ.
020O' 44 DB 68D ;MBM PAGE SIZE IN BYTES (MAX 255)

;INITIALIZED TO MATCH MBMtBCR SPECS

;0****C******e* END VARIABLES *********************************

PACE

Figure 18. MBM Software (page 5 of 32).

200

MACRO-80 3.36 17-Ilar-80 PAGE 1-8

;f THIS ROUTINE GETS THE MBN CONTROLLER STATUS,

;f INPUT: N/A ft

;f OUTPUT: A - CONTROLLER STATUS ft

0291' MBM$STAT:
02BI' DB 29 IN At(BH$STAT) ;READ CONTROLLER STATUS
02B3' C9 RET

;f THIS ROUTINE WRITES THE BUFFER POINTED TO BY HL REG PAIR TO f

;f THE SELECTED BOOTLOOP REGISTER(S). NO VALIDATION FOR f

;f THE PROPER NUMBER OF 1'S IS REQUIRED SINCE BMC HARDWARE
;f MASKS OFF UNWANTED BITS. (NOTE: THIS ROUTINE IS FOR *
;f TESTING ONLY, PRODUCTION ROUTINE NEEDS TO INITIALIZE f

;* BLOCK LENGTH AND ADDRESS REGISTERS BEFORE WRITING). f

;f INPUT: HL - PNTR TO FIFO BUF
;ft (HL) - BUFFER OF DATA TO BE WRITTEN f

;f OUTPUT: BOOTLOOP REGS ARE SET

02B4' MBMSWBRM:
02B4' F5 PUSH AF
02B5' C5 PUSH BC
02B6' CD 0415' CALL WAITSTAT ;WAIT UNTIL BMC AVAIL

;f** INITIALIZE BLR & ADDR REGS

02B9' 06 28 LD Bt40D ;INIT INPUT COUNT
0231' OE 28 LD CBM$DATA ; FIFO INPUT PORT
02BD' ED B3 OTIR ;WRITE 40 BYTES TO FIFO

02SF' 3E 10 LD ADN$WMBR ;f SEND WRITE ftt

02C1' D3 29 OUT (BM$CMD)tA ;* BOOTLOOP REG MASKED ftt

:iqu'e 18. MDM Software (page 6 of 32).

201

Vt

MACRO-80 3.36 17-Mar-80 PACE 1-9

02C3' Cl POP BC
02C4' Fl POP AF
02C5' C9 RET

;, THIS ROUTINE INITIALIZES THE BIC REGISTER TABLE AND THE MBM ,
;* SYSTEM AS SPECIFIED IN THE BPX72 USERS MANUAL,

;* INPUT: MBN$BMCR - TABLE OF BMC REG VALUES *

;* OUTPUT: MBM$BMCR+3/4 - ADDR REG VALUES ARE UPDATED *
MBN PERIPHERAL SYSTEM IS INITIALIZED *

02C6' MBM$INIT:
02C6' F5 PUSH AF

02C7' 3A 02A7' LD At(INTFLG) ;I** IS INTERRUPT
02CA' A7 AND A ;*** PROCESSING ENABLED? **
02CB" C4 048D' CALL NZINT$INIT ;YES
02CE' 20 11 JR NZIH$RT ;YES

02DO' AF XOR A ;*** SET BMCR ADDR REG
02D1' 32 02AE' LD (MBM$BMCR+3)tA ;*** TO 1ST PACE OF
02D4' 32 02AF' LD (MBM$BMCR+4)yA ;*** 1ST BUBBLE ***

02D7' CD 0415' CALL WAITSTAT ;WAIT UNTIL BMC AVAIL
02DA' CD 03C6' CALL SET$BMCR ;SET 8MC REGS

02)D' 3E 11 LD ABM$INT ;**I SEND THE BUBBLE I*

02DF' D3 29 OUT (BM$CMD)tA ;*I INITIALIZE COMMAND I**

02EV' Fl IN$RT: POP AF
02E2' C9 RET

PAGE

Figure 18. MBM Softeare (page 7 of 32).

202

MACRO-80 3.36 17-Mar-80 PAGE 1-10

;f THIS ROUTINE READS FROM 1 TO 3 MBM PAGES INTO A USER *
;i DEFINED BUFFER AREA,

;* INPUT: HL - BEGINNING ADDR OF INPUT BUFFER *

;* OUTPUT: (HL) - INPUT BUFFER IS FILLED WITH MBM DATA

02E3' MB$READ:
02E3' F5 PUSH AF
02E4' CD 0415' CALL WAITSTAT ;WAIT UNTIL BC AVAIL
02E7' CD 03C6' CALL SET$BMCR ;SET NEB CONTROLLER REGS

02EA' 3A 02A7' LD A,(INTFLG) ;*** IS INTERRUPT Iii
02ED' A7 AND A ;*** PROCESSING ENABLED? *n
02EE' C4 0487' CALL HZINTtREAD ;YES
02F1' 20 07 JR NZRD$RT ;YES

02F3' 3E 12 LD ABD$RD ;*f* ISSUE **
02F5' D3 29 OUT (BMtCMD)IA ;*** READ I
02F7' CD 03EC' CALL READ ;READ MBE BLOCK INTO (HL) BUF

02FA' CD 03DA' RD$RT: CALL INCSADRR ;INCREMENT BMC ADDR REG VALUE
02FD' F1 POP AF
02FE' C9 RET

PAGE

Figure 18. MDR Software (page 8 of 32).

203

MACRO-80 3.36 17-Mar-80 PAGE 1-11

;* THIS ROUTINE READS THE SELECTED BOOTLOOP REGISTER(S) INTO *
;* A FIFO BUFFER. (NOTEz THIS ROUTINE IS FOR TESTING ONLY, f
;, PRODUCTION ROUTINE NEEDS TO INITIALIZE BLOCK LENGTH AND *
;* ADDRESS REGISTERS BEFORE READING, AND UNSCRAMBLE *
* (DE-INTERLEAVE) THE BOOTLOOP VALUES. *

;* INPUT: HL - PNTR TO BUFFER

;* OUTPUT: (HL) - BUFFER IS FILLED WITH BOOTLOOP DATA *
;*t *

02FF' BM$RXBR:
02FF' F5 PUSH AF
0300' CD 0415' CALL WAITSTAT ;WAIT UNTIL BMC AVAIL

;**f INITIALIZE BLR & ADDR REGS

0303' 3E 15 LD ABM$RBR ;*f* SEND READ ***
0305' D3 29 OUT (BMtCMD)tA ;*f* BOOTLOOP REG ***

0307' CD 03EC' CALL READ ;READ NBN BLOCK INTO (HL) BUF

030A' Fl POP AF
0308' C9 RET

;* THIS ROUTINE WRITES I TO 3 MBM PAGES FROM A USER DEFINED *

;f BUFFER AREA. *

;f INPUT: HL - BEGINNING ADDR OF OUTPUT BUFFER

;OUTPUT: MBM PAGE(S) WRITTEN*

030C' NBM$WRIT:
030C' F5 PUSH AF
030D' CS PUSH BC
030E' E5 PUSH HL

Figure 18. RBM Software (page 9 of 32).

204

MACRO-80 3.36 17-Mar-80 PAGE 1-12

030F' CD 0415' CALL WAITSTAT ;WAIT UNTIL BIC AVAIL
0312' CD 03C6' CALL SETSBMCR ;SET MBM CONTROLLER REGS

0315' 3A 02A7' LD A,(INTFLG) ;*** IS INTERRUPT *
0318' A7 AND A ;*, PROCESSING ENABLED? ***
0319' C4 04D4' CALL NZtINT$WRIT ;YES
031C' 20 DC JR NZRD$RT ;YES

031E' 3E 13 LD ABM$WR ;*** SEND WRITE ***
0320' D3 29 OUT (BM$CMD),A ;*** COMMAND "*

0322' CD 041C' CALL WATESTRT ;**I WAIT UNTIL WRITE ***
0325' CB 47 WR$WT1: BIT FFRBPSA ;*** STARTS AND FIFO ***
0327' 28 FC JR ZtWR$WT1 ;*** BECOMES AVAILABLE ***

0329' OE 28 LD CBM$DATA ;SET FIFO OUTPUT PORT
032B' 3A 02BO' LD A,(MBM$PSIZ) ;*** SET OUTPUT ***
032E' 47 LD BtA ;*** LENGTH ***

032F' DB 29 WR$WT2: IN A,(BM$STAT) ;GET BMC STATUS
0331' CB 7F BIT BSYBPSA ;BUSY?
0333' 28 OB JR ZWRSRT ;NO
0335' CB 47 BIT FFRBPStA ;ROOM IN FIFO?
0337' 28 F6 JR ZtWR$WT2 ;NO THEN WAIT
0339' ED A3 OUTI ;YES, OUTPUT NEXT BYTE
033B' 00 HOP
033C' 00 HOP ;GIVE FIFO-READY STATUS TIME TO CHANGE
033D' 00 HOP
033E' 20 EF JR NZWR$WT2 ;LOOP UNTIL DONE

0340' CD 03DA' WRSRT: CALL INC$ADRR ;INCREMENT BMC ADDR REG VALUE
0343' El POP HL
0344' Cl POP BC
0345' Fl POP AF
0346' C9 RET

PAGE

Figure 18. MBM Software (page 10 of 32).

205

MACRO-80 3.36 17-Mar-80 PAGE 1-13

;f THIS ROUTINE POSITIONS THE MBM AT A USER SPECIFIED PAGE f

;f (RELATIVE TO THE MBM INPUT TRACI).

;* INPUTt MBM$BMCR+3/4 - PAGE TO BE SELECTED f

;* OUTPUT- H/A f

0347' MBMSRSEX%
0347' F5 PUSH AF

0348' E5 PUSH HL

0349' CD 0415' CALL WAITSTAT ;WAIT UNTIL BMC AVAIL

034C' 2A 02AE' LD HL,(MBM$BMCR+3) ;f*f DECREMENT BMC ADDR f*f

034F' 2B DEC HL ;*ft REGISTER VALUE AS ftt

0350' 22 02AE' LD (MBM$BMCR+3),HL ;f REQUIRED FOR SEEK f*f

0353' CD 03C6' CALL SET$BMCR ;SET MBM CONTROLLER REGS

0356' 3E 14 LD AtBMSRSI ;ftt SEND ftt

0358' D3 29 OUT (BM$CMD),A ;*ft READ SEEK ftt

035A' 23 IHC HL ;ftf RESET BMC ADDR VALUE ftf

035B' 22 02AE' LD (MBM$BMCR+3),HL ;*f TO USER REQUESTED PACE ft*

035E' El POP HL

035F' Fl POP AF

0360' C9 RET
PAGE

Figure 18. MBM Software (page 11 of 32).

206

MACRO-80 3,36 17-Mar-80 PAGE 1-14

* THIS ROUTINE WRITES THE BUFFER POINTED TO BY HL REG PAIR TO *
;f THE SELECTED BOOTLOOP REGISTER(S). NOTE THIS ROUTINE f

]* REQUIRES VALIDATION OF THE PROPER NUMBER OF I'S TO BE PUT f

;f IN THE BOOTLOOP BEFORE THEY ARE WRITTEN. (NOTE: THIS *
;f ROUTINE IS FOR TESTING ONLYt PRODUCTION ROUTINE NEEDS TO
;f INITIALIZE BLOCK LENGTH AND ADDRESS REGISTERS BEFORE
;f WRITINGt AND BUBBLE CHANNELS MUST BE INTERLEAVED BIT BY BIT *
;* BEFORE THE BOOTLOOP IS WRITTEN),

;* INPUT: HL - PNTR TO FIFO BUF
(HL) - BUFFER OF DATA TO BE WRITTEN *

;* OUTPUT: BOOTLOOP REGS ARE SET

0361 MBNWXBR:
0361' F5 PUSH AF
0362' C5 PUSH BC

CALL WAITSTAT ;WAIT UNTIL BMC AVAIL

;tf* INITIALIZE DLR & ADDR REGS ftt

;,f, INTERLEAVING ROUTINE GOES HERE ft*

fttf VALIDATION ROUTINE GOES HERE ftt

LD Bt40D ;INIT INPUT COUNT
LD CtBM$DATA ; FIFO INPUT PORT
OTIR ;WRITE 40 BYTES TO FIFO

LD AtBMSWBR ;*ft SEND WRITE *ft
OUT (BM$CMD),A ;ftt BOOTLOOP REG ftt

0363' LD 03B9' CALL NONSUP ;COMMAND NOT SUPPORTED

0366' Cl POP BC
0367' Fl POP AF
0368' C9 RET

PAGE

Figure 18. MBN Software (page 12 of 32).

207

MACRO-80 3,36 17-Mir-80 PAGE 1-15

;* THIS AREA RESERVED FOR -- RITE BOOTLOOP ROUTINE ,

;* INPUT: I

'I OUTPUT:

0369' BMD$WZDL:
0369' F5 PUSH AF

CALL WAITSTAT ;WAIT UNTIL BNC AVAIL

LD AtBMSWBL ;III SEND WRITE I

OUT (BI$CND)tA ;*** BOOTLOOP **

036A' CD 03B9' CALL NONSUP ;COMMAND NOT SUPPORTED

036D' Fl POP AF
036E' C9 RET

;* THIS AREA RESERVED FOR -- READ PSA STATUS' ROUTINE

;I INPUT: *

;* OUTPUT: *

036F' MBM$RFSA:
036F' F5 PUSH AF

CALL WAITSTAT ;WAIT UNTIL BMC AVAIL

LD AtBN$FSA ;III SEND FSA III

OUT (BM$CMD),A ;UI STATUS **

0370' CD 0339' CALL NONSUP ;COMMAND NOT SUPPORTED

0373' Fl POP AF
0374' C9 RET

PACE

Fiqure 18, MDR Software (page 13 of 32).

208

LA

OIACRO-80 3.36 17-Iqar-80 PACE 1-16

;K THIS ROUTINE TERMINATES THE CURRENTLY EXECUTING COMMAND

~*INPUT: N/A

;K OUTPUT: N/AK

0375' MBMSADRTz
0375' F5 PUSH AF

0376' 3E 19 LD ABMSABT ;K*SENDKK

0378' D3 29 OUT (8MSCWD),A ;KKABORTK*

037AW F1 POP AF
037B' C? RET

;K THIS ROUTINE RESETS THE BMC FIFO AN4D EACH FSA.

;K INPUT: N/AK

;* OUTPUT: N/A

037C' MBMISRES:.
037C' F5 PUSH AF

037D' 3E IF LD AtBM$SRE ;*KSEND S/W I

037F' D3 29 OUT (BMSCMD),A ~ KKRESET *K

0381' Fl POP AF
0382' C9 RET

PACE

Figure 18. MRM Software (page 14 of 32).

209

MACRO-80 3,36 17-Mar-80 PAGE 1-17

;, THIS ROUTINE POSITIONS THE MB AT A USER SPECIFIED PACE f

;* (RELATIVE TO THE MBM OUTPUT TRACK). f

;f INPUT: MBM$BMCR+3/4 - PACE TO BE SELECTED f

;* OUTPUT. N/A *

0383' MBNtWSEKz
0383' F5 PUSH AF
0384' ES PUSH HL
0385' CD 0415' CALL WAITSTAT ;WAIT UNTIL BMC AVAIL

0388' 2A 02AE' LD HL,(MBR$BMCR+3) ;*t DECREMENT BMC ADDR ftt

038B' 2B DEC HL ;ftt REGISTER VALUE AS **
038C' 22 02AE' LD (MBNSBMCR+3),HL ;*f* REQUIRED FOR SEEK f*f

038F' CD 03C6' CALL SETSBMCR ;SET MBR CONTROLLER RECS

0392' 3E IA LD AtBmtsw ,fxf SEND ftt

0394' D3 29 OUT (BMSCMD),A ;ftt WRITE SEEK ftt

0396' 23 INC HL ;f** RESET BMC ADDR VALUE f**

0397' 22 02AE' LD (MBI$BMCR+3),HL ;*ft TO USER REQUESTED PACE *f*

039A' El POP HL
039B' Fl POP AF
039C' C9 RET

PAGE

Figure 18. 'BM Software (page 15 of 32).

210

MACRO-80 3.36 17-Mar-80 PACE 1-18

;* THIS AREA RESERVED FOR -- READ BOOTLOOP ROUTINE I

; INPUT: *

;* OUTPUT: *

039D' IBM$RZBL:
039D' F5 PUSH AF

CALL WAITSTAT ;WAIT UNTIL DNC AVAIL

LD ABMSRDL ;II* SEND READ ***

OUT (BM$CMD),A ;*B* DOOTLOOP III

039E' CD 03B9' CALL NONSUP ;CONMAND NOT SUPPORTED

03A1' Fl POP AF
03A2' C9 RET

;* THIS AREA RESERVED FOR -- READ CORRECTED DATA DATA ROUTINE *

;* INPUT:

;* OUTPUTz *

03A3 MBM$RCDT:
03A3' F5 PUSH Af

CALL WAITSTAT ;WAIT UNTIL BMC AVAIL

LD AtBMSRCD ;*** SEND READ **
OUT (BM$CMD)tA ;*** CORRECTED DATA III

03A4' CD 03B9' CALL NONSUP ;COIiMAND NOT SUPPORTED

03A7' Fl POP AF
03A8' C9 RET

PAGE

Figure 18. MBM Software (page 16 of 32).

211

MACRO-80 3.36 17-Mar-80 PAGE 1-19

;N , *** * * * , * N * ** N N N * * N* * * ** N N

;N THIS ROUTINE RESETS THE MBM CONTROLLER (BMC) FIFO, ,

;* INPUT: N/A *

;N OUTPUT: N/A N

03A9' MBM$FFRE:
03A9' F5 PUSH AF

03AA' CD 0415' CALL WAITSTAT ;WAIT UNTIL BMC AVAIL

03AD' 3E ID LD ABM$RE ;N*N SEND *

03AF' D3 29 OUT (BM$CMD)tA ;N** RESET *

03B9' Fl POP AF

;N THIS ROUTINE PURGES MOST OF THE REGISTERS THROUGHOUT THE N

;N MDR SYSTEN, INCLUDING SEVERAL IN THE BMC. N

;N INPUT: N/A *

;* OUTPUT: N/A N

0382' MBi$PURG:
0392' FS PUSH AF

03B3' 3E IE LD A,9ISPRG ;N*N SEND *

0385' D3 29 OUT (BMSCMD),A ;*** PURGE *

0397' Fl POP AF
0338' C9 RET

PAGE

Figure 18. MRM Software (page 17 of 32).

212

MACRO-80 3.36 17-Mar-80 PAGE 1-20

;* THIS ROUTINE PRINTS A WARNING THAT AN OPERATION IS NOT YET I

;I IMPLEMENTED. *

;* INPUT: N/A

;* OUTPUT: N/A *

03B9' C5 NONSUP: PUSH BC
03BA' D5 PUSH DE

03BB' OE 09 LD CPRTLN ;*** NOTIFY USER **
03BD' 11 0000' LD DEtSUPMSG ;*I* OF COMMAND III

03C0' CD 0005 CALL CDOS ;**M NON-SUPPORT Ifl

03C3' DI POP DE
.03C4' CI POP BC
03C5' C9 RET

;* THIS ROUTINE SETS THE MBM CONTROLLER REGS FROM VALUES *
;* STORED IN THE MBMSBMCR TABLE.

;* INPUT: ABMSBMCR - BMC REG VALUES *

;* OUTPUT: MB CONTROLLER REGS ARE SET I

03C6' SET$BCR:
03C6' FS PUSH AF
03C7' CS PUSH BC
03C8' ES PUSH HL

03C9' 3E 00 LD AtBLRO ;I** SET BMC POINTER TO III

03CB' D3 29 OUT (BM$CMD),A ;*** BLOCK LENGTH REG III

03CD' 06 05 LD BBRLEH ;SET LENGTH OF MBM$BMCR TABLE
03CF' OE 28 LD CBMtDATA ; OUTPUT PORT
03D1' 21 02A8' LD HLNB$ BKCR ; OUTPUT BUFFER

Figure 18. MBM Software (page 18 of 32).

213

RACRO-80 3.36 17-flar-80 PAGE 1-21

03D4' ED 53 OTIR

03D6' El POP HL
03D7' Cl POP BC
03D8' Fl POP AF
03D9' C9 RET

;* THIS ROUTINE INCREMENTS THE ADDR REG VALUES STORED IN THE f
;ft MBt$BICR TABLE. (A KEY TO THE CODE IS THAT THE PACE ADDR ,
;f IN THE BfiCR TABLE IS IN THE FLIPPED FORM OF Z-80 ADDRESSES). ,

;f INPUTz IIBI SB'CR - NBR OF PAGES PER I/O BLOCK f
;'BMtBMCR+3/4 - BMC ADDR REG VALUES f

;f OUTPUTz MB$BMCR+3/4 - INCREMENTED BY 1

03DA' Z1CSADRR.
03DA" C5 PUSH BC
03DB' E5 PUSH HL

03DC' ED 4B 02AB' LD BCt(BMBMCR) ;f** GET HBR OF PAGES USED ftt

03EO" 06 00 LD BtZERO ;*** IN PREVIOUS OPERATION ftt

03E2' 2A 02AE' LD HLt(MBM$BNCR+3) ;GET ADDR REG VALUES BEFORE OPERATION
03E5' 09 ADD HLBC ;ftt UPDATE ADDR ftt

03E6' 22 02AE' LD (MBM$BMCR+3)pHL ;ftt REG VALUES ***

03E9' El POP HL
03EA' Cl POP BC
03EB' C9 RET

PACE

Figure 18. MBM Software (page 19 of 32).

214

MACRO-80 3.36 17-Har-B0 PAGE 1-22

;f THIS ROUTINE USES THE POLLED TRANSFER METHOD TO READ A f

;f A BLOCK OF DATA INTO A USER DEFINED AREA. USER'S BUFFER f
; M RUST BE LONG ENOUGH TO HOLD THE REQUESTED MBM BLOCK. f

;* INPUT: HL - ADDR OF BEGINNING OF BUFFER f

;* OUTPUT: HL - UNAFFECTED *
(HL) - MB BLOCK POINTED TO BY BMC REGS f

03EC' F5 READ: PUSH AF
03ED' C5 PUSH BC
03EE' D5 PUSH DE
03EF' E5 PUSH HL

03FO' CD 041C' CALL WATESTRT ;WAIT FOR BMC TO START READING

03F3" 3A 02BO' LD A,(MBM$PSIZ) ;IHIT M** IAX PG
03F6' 3C INC A ftft* SIZE **
03F7' 47 LD BA +t*ft + I
03F8' OE 28 LD CBNSDATA ; INPUT PORT
03FA' READ$LP:
03FA' DB 29 IN At(BM$STAT) ;GET STATUS
03FC' CB 7F BIT BSYBPSA ;BUSY?
03FE' 28 10 JR Z)READ$RT ;NO - DONE
0400' CD 47 BIT FFRBPSA ;YES - DATA AVAIL?
0402' 28 F6 JR ZREAD$LP NO
0404' ED A2 INI YES - READ A BYTE
0406' 20 F2 JR HZtREAD$LP LOOP IF PG NOT OVERFLOWED

0408' OE 09 LD CtPRTLN ; * *f * * * * * * * * * * * *
040A' 11 0022' LD DERDERR ;f ERROR - READ PAST END OF PAGE *
040D' CDO005 CALL CDOS ;** ** ******* tf f**

0410' READ$RT:
0410' El POP HL
0411' D[POP DE
0412' Cl POP BC
0413' Fl POP AF
0414' C9 RET

PACE

Figure 18. MBN Software (page 20 of 32).

215

MACRO-80 3.36 17-Mar-80 PAGE 1-23

;I THIS ROUTINE MONITORS MBM STATUS UNTIL CONTROLLER BMC
;* BECOMES HOT BUSY.

;I INPUT: N/A

;* OUTPUT: A - MBM CONTROLLER STATUS *

0415' WAITSTAT:
0415' DB 29 IN At(BM$STAT) ;GET MBM STATUS
0417' CD 7F BIT BSYBPSA ;STILL BUSY?
0419' 20 FA JR NZWAITSTAT ;YES
041B' C9 RET

;I THIS ROUTINE MONITORS MBM STATUS UNTIL THE BMC BECOMES BUSY. *

;* INPUT: H/A

;I OUTPUT: N/A *

041C' VATESTRT:
041C' F5 PUSH AF

041D' DB 29 WATELP: IN Aj(BM$STAT) ;GET BMC STATUS
041F' CD 7F BIT BSYBPSA ;HAS READ STARTED YET?
0421' 28 FA JR ZWATELP ;HO, LOOP UNTIL IT DOES

0423' Fl POP AF
0424' C9 RET

PAGE

Figure 1, ME Software (page 21 of 32).

216

MACRO-80 3.36 17-Mar-80 PACE 1-24

;* THIS ROUTINE SETS UP THE SYSTEM FOR PROCESSING MBM a
;* GENERATED INTERRUPTS, AND REINITIALIZES THE BMC FOR *
;* INTERRUPT I/O. a

;* INPUT: MBM$BICR+2 - BMC ENABLE REG VALUE *

;* OUTPUT: MBM$BMCR+2 - BMC ENABLE REG VALUE WITH NORMAL a
INTERRUPTS SET

MBM$BMCR+3/4 - BMC ADDR REG SET TO 1ST PACE OF
1ST BUBBLE

MBC IS INITIALIZED FOR INTERRUPT I/O

0425' MBM$ISET:
0425' F5 PUSH AF
0426' E5 PUSH HL
0427' 3E 01 LD AtONE ;*** SET INTERRUPT **
0429' 32 02A7' LD (INTFLG),A ;*** ENABLED FLAG *

042C' 3A 02AD' LD A,(MBMSBMCR+2) ;*** SET NORMAL INTERRUPTS a"
042F' CB C7 SET INBPSA ;a** WITHIH THE BC ***
0431' 32 02AD' LD (NBM$BNCR+2),A ;*** REG VALUE TABLE ***

0434' CD 048D' CALL INTSINIT ;REIHITIALIZE MBM

0437' 3A 0038 LD At(INT$RST) ;* * * * * * * * * * * * *
043A' 32 02A8' LD (INTSAV),A ;* SAVE OLD INTERRUPT *
043D' 2A 0039 LD HL,(INT$RST+1) ;* RESTART OPERATION(S) *
0440' 22 02A9' LD (INTSAV+1),HL ;aaaaaa* aaaaaa

0443' 3E C3 LD AJP$OPCD ;*aaaaaaaaaa
0445' 32 0038 LD (IHT$RST),A ;* SET BRANCH TO *
0448' 21 0500' LD HLtINTSHNDL ;* INTERRUPT HANDLER *
044B' 22 0039 LD (IHT$RSTa1)tHL ;**,** **a*

044E' AF XOR A ; a * * a ~ a a
044F' 32 02A3' LD (RDSIZ)tA ;* CLEAR READ & WRITE SIZES *
0452' 32 02A4' LD (WRSIZ),A ;***a**** **aaaaa

0455' El POP HL
0456' Fl POP AF
0457' C9 RET

PACE

Figure 18. MBM Software (page 21 of 32).

217

MACRO-80 3.36 17-Mar-80 PAGE 1-25

;* THIS ROUTINE SETS THE SOFTWARE SYSTEM FOR POLLED MBM I/O
;* AND REINITIALIZES THE BMC FOR POLLED I/O.

INT -
;* INPUT: MBMSBMCR+2 - BMC ENABLE REG VALUE

;* OUTPUT: MBM$BNCR+2 - BMC ENABLE REG VALUE WITH ALL
INTERRUPTS TURNED OFF

MBM$BMCR+3/4 - BIC ADDR REG SET TO tST PAGE OF
1ST BUBBLE *

9MC IS INITIALIZED FOR POLLED I/O

0458' MBM$ICLR:
0458' F5 PUSH AF
0459' C5 PUSH BC
045A' D5 PUSH DE
0453' E5 PUSH HL

045C' 3A 02A7' LD A,(INTFLG) ;*** IS INTERRUPT PROCESSING ***
045F' A7 AND A ;*** ALREADY DISABLED? ***

0460' 28 26 JR ZICSRT ;YES
0462' AF XOR A ;NO? III CLEAR INTERRUPT **
0463' 32 02A7' LD (INTFLG),A *1* ENABLED FLAG *1

0466' F3 DI
0467' 3A 02A8' LD A,(INTSAV)
046A' 32 0038 LD (INTSRST),A ;* RESTORE OLD INTERRUPT I

046D' 2A 02A9' LD HL,(INTSAV+I) ;I RESTART OPERATION(S)
0470' 22 0039 LD (IHTSRST+1),HL ;* * * * * * * * * **

0473' 3A 02AD' LD A,(MDM$CR2) ;*** CLEAR ALL **
0476' E6 FE AND OFFH-INBIT ;** INTERRUPTS "I

0478' E6 82 AND IEBIT+IPBIT ;*** WITHIN THE BNC III

047A' 32 O.AD' LD (MBM$BNCR+2),A ;*** REG VALUE TABLE **

047D' CD 02C6' CALL MBMSINIT ;REINIT MBN SYSTEM
0480' OE 09 LD CPRTLN ;* * * * * * * * * ** *

0482' 11 025B' LD DEREIMSG ;* SYSTEM REINITIALIZED FOR POLLED I/O *
0485' CD0005 CALL CDOS

0488' El ICSRT: POP HL
0489' DI POP DE
048A' Cl POP BC
0483' Fl POP AF
048C' C9 RET

Figure 18. MN Software (page 23 of 32).

218

RACRO-80 3.36 17-Mar-80 PAGE 1-26

;N THIS ROUTINE INITIALIZES THE MBM MHEN THE SYSTEM IS IN N

;* ITS INTERRUPT I/O PROCESSING MODE.

;* INPUT% BMCR - TABLE OF BMC REG VALUES

;N OUTPUTz MBN$BMCR+3/4 - ADDR REG VALUES ARE UPDATED N

MBM PERIPHERAL SYSTEM IS INITIALIZED ,

048D' INT$INIT:
048D' F5 PUSH AF
048E' C5 PUSH BC
048F' D5 PUSH DE

;NOTEz THE INITIALIZE COMlMAND CAUSES RANDOM TOGGLING OF THE DRO
INTERRUPT LINE (THIS IS AN UNDOCUMENTED BUT KNOWN BMC
HARDWARE DEFICIENCY). THEREFORE, WHEN INITIALIZING,
DISABLE INTERRUPTS UNTIL INITIALIZATION COMPLETES,

0490' F3 DI
0491' AF XOR A 3*** SET BMC ADDR REG **
0492' 32 02AE' LD (MBM$BlICR+3),A ;*** TO 1ST PAGE OF **
0495' 32 02AF' LD (MBM$BMCR+4)tA ; I, 1ST BUBBLE NNN

0498' CD 0415' CALL WAITSTAT ;WAIT UNTIL BMC AVAIL
049B' CD 03C6' CALL SET$BMCR ;SET BMC REGS

049E' 3E 11 LD ABM$INT ;*** SEND THE BUBBLE ***
04A0' D3 29 OUT (BM$CMD)tA ;** INITIALIZE COMMAND **
04A2' OE 09 LD CPRTLN ;** ** ***N *
04A4' 11 014C' LD DEINIMSG ;N SYSTEM INITIALIZED FOR INTERRUPTS *
04A7' CD 0005 CALL CDOS ;* * * * * * * * * * * * * * * * * *
04AA' CD 0415' CALL WAITSTAT ;WAIT UNTIL DONE

04AD' CD 058D' CALL IRESET ;RESET INTERRUPTS AND STATUS REG
0480' ED 56 IN I ;SET INTERRUPTS FOR JUMP TO LOC Y'38'
04B2' FB EI

0483' D1 POP DE
0484' Cl POP BC
0485' Fl POP AF
04B6' C9 REY

PAGE

Figure 18. NBM Software (page 24 of 32).

219

MACRO-80 3.36 17-Mar-80 PAGE 1-27

THIS ROUTINE INITIATES AN MBM READ (WITH INTERRUPT

;0 PROCESSING) TO A USER DEFINED BUFFER AREA.

;* INPUT: HL - BEGINNING ADDR OF INPUT BUFFER

;o OUTPUTz BUFPTR - PNTR TO BEGINNING OF INPUT BUFFER 0

0437' INT$READ-
04B7' F5 PUSH AF

0438' 22 02A5' LD (BUFPTR)pHL ;IHIT BUF PNTR
04BB' 3A 0BO' LD A,(MNB$PSIZ) ;001 SET UP NBR OF BYTES **
04BE' 32 02A4' LD (RDSIZ),A ;0** TO BE XFERRED *0

04C1' 3E 12 LD ABMSRD ;*** ISSUE *
04C3 ° D3 29 OUT (BMSCMD)IA ;*** READ **

04C5' 76 IRtC8 HALT ;WAIT FOR A 22 BYTE INTERRUPT
04C6' 3A 02A3' LD A,(RDSIZ) ;GET REMAINING BYTES TO BE READ
04C9' FE 16 CP 22D ;ARE LESS THAN 22 BYTES LEFT?
04CB' 30 F8 JR NCIRtC8 ;NO
04CD' FE 00 CP ZERO ;ARE EXACTLY 0 BYTES LEFT?
04CF' 28 01 JR ZjIRtRT ;YESp OP PROBABLY ALREADY COMPLETE
04D1' 76 HALT ;WAIT FOR OP COMPLETE INT

0402' Fl IR$RTz POP AF
04D3' C9 RET

PAGE

Figure 18. MBM Software (page 25 of 32).

220

MACRO-80 3.36 17-Mar-80 PAGE 1-28

;* THIS ROUTINE INITIATES AN MBM WRITE (USING INTERRUPT *
;* PROCESSING) FROM A USER DEFINED BUFFER AREA,

;* INPUT: HL - BEGINNING ADDR OF OUTPUT BUFFER

;* OUTPUT: BUFPTR - PNTR TO BEGINNING OF INPUT BUFFER *

0404' INT$WRIT:
004' F5 PUSH AF
0405' C5 PUSH BC
0406' E5 PUSH HL

0407' 3E 13 LD ABM$WR ;* SEND WRITE *1*

04D9' D3 29 OUT (BMSCMD),A ;*** COMMAND *1*

04DB' CD 041C' CALL WATESTRT ;*** WAIT UNTIL WRITE III

04DE' CD 47 IW$WTIz BIT FFRBPSA ;**o STARTS AND FIFO **
04EO' 28 FC JR ZIWSWTl ;*I* BECOMES AVAILABLE 'II

04E2' OE 28 LD CBM$DATA ;SET FIFO OUTPUT PORT
04E4' 06 28 LD B,40D & OUTPUT LENGTH
04E6' ED B3 OTIR ;FILL THE FIFO

04E8' 22 02A5' LD (BUFPTR)tHL ;INIT BUF PNTR
04EB' 3A 02BO' LD At(MBM$PSIZ) ;*** SET NBR OF *1
04EE' D6 28 SUB 40D ;I*I BYTES REMAINING *1*

04FO' 32 02A4' LD (WRSIZ),A ;*** IN OUTPUT BUF **

04F3' 76 IW$C8: HALT ;WAIT FOR 22 BYTE INT
04F4 3A 02A4' LD A,(WRSIZ) ;GET NBR OF BYTES TO BE WRITTEN
04F7' FE 00 CP ZERO ;WRITE BUFFER EMPTY?
04F9* 20 F8 JR NZtIW$C8 ;NO
04FB* 76 HALT ;YES, WAIT FOR OP COMPLETE INTERRUPT

04FC' El POP HL
04FD' CI POP BC
04FE' Fl POP AF
04F* C9 RET

PAGE

Figure 18. MBM Software (page 26 of 32).

221

MACRO-80 3.36 17-Mar-80 PAGE 1-29

;* THIS ROUTINE HANDLES MBM INTERRUPTS BY DETERMINING ITS
;* SOURCE AND JUMPING TO APPROPRIATE PROCESSING ROUTINES.

;* INPUT: RDSIZ - NBR OF BYTES REMAINING TO BE READ
WRSIZ - HBR OF BYTES REMAINING TO BE WRITTEN *

;* OUTPUT: RDSIZ & WRSIZ UPDATED (BY INT$?? SUBROUTINES)

0500' IHT$HNDL:
0500' F5 PUSH AF
0501' C5 PUSH BC
0502' D5 PUSH DE

0503' DB 29 IN A,(BM$STAT) ;*** SAVE STATUS ***
0505' 47 LD BA ;** INBRG ***

0506' CE 78 BIT BSYBPSB ;BUSY?
0508' C2 0558' JP NZIH$RW ;YES
050B' CE 68 BIT OPFBPSB ;OP FAIL?
050D' CA 0546' JP ZIH$OC ;NO

0510' OE09 LD CtPRTLN ;YES, * * II*I*** llI*

0512' 11 0049' LD DEtERRMSG * ERROR GENERATED INTERRUPT *
0515' CD 0005 CALL CDOS * * * * * * * * * * * * * * *
0518' OE 09 LD CPRTLN ;I** UNDETERMINED ERROR ***
051A' 11 0071' LD DEtWHONOZ ;*** (WILL BE OVER-WRITTEN I**
O51D' CD 0005 CALL CDOS ;H* ONCE ERROR IS DIAGNOSED) **

0520' CE 50 BIT UHCBPSB ;UNCORRECTABLE ERROR?
0522' 28 08 JR ZtIH$C3 ;NO
0524' OE 09 LD CPRTLN
0526' 11 0090' LD DEUNCERR ;* UNCORRECTABLE ERROR w
0529' CD 0005 CALL CDOS * * * * * * * * * *

052C' CB 58 IH$C3: BIT CORBPSB ;CORRECTABLE ERROR?
052E' 28 08 JR ZtIH$C4 ;40
0530' OE 09 LD CtPRTLN ;**I*I*****

0532' 11 00g1' LD DECORERR ;* CORRECTABLE ERROR I

0535' CD 0005 CALL CDOS ; * * * * * *

0538' CE 60 IH$C4: BIT TINMPStB ;TIMING ERROR?
053A' 28 08 JR ZIH$C5 ;NO

Fiqure 18. MDR Software (paqe 27 of 32).

222

MACRO-80 3.36 17-Mar-80 PAGE 1-30

053C' OE 09 LD CPRTLN
053E' 11 0002' LD DETIMERR ;t TIMING ERROR *

0541' CD 0005 CALL CDOS

0544' IH$CS:
CALL MBMSFFRE ;RESET FIFO
CALL WAITST ;WAIT FOR RESET COMPLETE

0544' 18 26 JR IHSDN

0546' 3A 02A3' IH$OCz LD A?(RDSIZ) ;*** IS A READ **.

0549' FE 00 CP ZERO ;*** PENDING? ***

054B' C4 0575' CALL NZINT$RD ;YES) FINISH READING BUF

054E' OE 09 LD CtPRTLN

0550' 11 0OF3' LD DEOPCMSG ;* OP COMPLETE *

0553' CD 0005 CALL CDOS
0556' 18 14 JR IH$DN

0558' 3A 02A3' IHSRW: LD A,(RDSIZ) ;*** IS A READ ***

055B' FE 00 CP ZERO ;fl* PENDING? **

055D' C4 0575' CALL NZINT$RD ;YES, READ MORE AND RETURN

0560' 20 OD JR NZtIHSRT ; TO INTERRUPTED ROUTINE

0562' 3A 02A4' LD A,(WRSIZ) ;*** IS A WRITE ***

0565' FE 00 CP ZERO ;*** PENDING? ***

0567' C4 0599' CALL NZINT$WT ;YESt WRITE MORE AND RETURN

056A' 18 03 JR IH$RT TO INTERRUPTED ROUTINE

056C' CD 05BD' IH$DN: CALL IRESET ;RESET INTERRUPTS AND STATUS REGS

056F' 0l IH$RTz POP DE
0570' Cl POP BC

0571' Fl POP AF
0572' FB El

0573' ED 4D RETI
PAGE

Figure 18. MBM Software (page 28 of 32).

223

MACRO-80 3.36 17-Mar-80 PAGE 1-31

;I THIS ROUTINE SUPPORTS MBM READING WHEN INTERRUPT I/0 IS *
;I REQUIRED. DATA IS XFERRED FROM THE MBM INTO A USER DEFINED
;I AREA. BLOCK LENGTH CHECKS ARE NOT MADEt SO USER'S BUFFER
;I AREA MUST BE LONG ENOUGH TO HOLD THE REQUESTED MBM BLOCK. *

;* INPUT: BUFPTR - POINTER TO NEXT CHAR IN READ BUFFER

;I OUTPUT: BUFPTR - UPDATED TO NEXT OUTPUT CHAR *

0575' INT$RDz
0575' FS PUSH AF
0576' C5 PUSH DC
0577' ES PUSH HL

0578' 2A 02A5' LD HL,(BUFPTR) ;SET BUF PNTR
0579' OE 28 LD CBM$DATA ;INPUT PORT
057D' 3A 02A3' LD A,(RDSIZ) ;GET NBR OF BYTES REMAINING IN BUF
0580' FE 16 CP HALFUL ;LESS THAN HALF OF FIFO BUF LEFT?
0582' 38 07 JR CIRD$C2 ;YES
0584' 06 16 LD BHALFUL ;NO) SET HALF FIFO BUF LENGTH
0586' 90 SUB B ;DECREASE NBR OF BYTES REMAINING
0587' ED B2 INIR ;READ A BLOCK
0589' 18 04 JR IRD$DN

058B' 47 IRD$C2: LD BtA ;SET NBR OF BYTES REMAINING
058C' AF XOR A ;CLEAR NBR OF BYTES REMAINING IN BUF
058D' ED B2 INIR ;READ FINAL BLOCK

058F' 32 02A3' IRD$ON: LD (RDSIZ),A ;SAVE HBR OF BYTES LEFT IN BUF
0592' 22 02A5' LD (BUFPTR)tHL ;SAVE PNTR TO NEXT BYTE IN BUF
0595' El POP HL
0596' Cl POP BC
0597' Fl POP AF
0598' C9 RET

PAGE

Figure 18. MDM Software (page 29 of 32),

224

MACRO-80 3.36 17-Mar-80 PAGE 1-32

* THIS ROUTINE SUPPORTS MBM WRITING WHEN INTERRUPT I/O IS *
* REQUIRED. DATA IS XFERRED FROM A USER DEFINED OUTPUT *
* BUFFER TO THE MBM.

;* INPUT: BUFPTR - POINTER TO NEXT CHAR IN WRITE BUFFER *

;* OUTPUT: BUFPTR - UPDATED TO NEXT OUTPUT CHAR *

0599, INT$WT:
0599' F5 PUSH AF
059A" C5 PUSH BC
059B' E5 PUSH HL

059C' 2A 02A5' LD HLt(BUFPTR) ;SET BUF PHTR
059F' OE 28 LD CBM$DATA ;OUTPUT PORT
05A1' 3A 02A4' LD A,(WRSIZ) ;GET HBR OF BYTES REMAINING IN BUF
05A4' FE 16 CP HALFUL ;LESS THAN HALF OF FIFO BUF LEFT?
05A6' 38 07 JR CtIURSC2 ;YES
05A8' 06 16 LD BIHALFUL ;HO) SET HALF FIFO BUF LENGTH
O5AA' 90 SUB B ;DECREASE NBR OF BYTES REMAINING
05AB' ED B3 OTIR ;WRITE A BLOCK
05AD' 18 04 JR IWR$DN

O5AF" 47 IWR$C2: LD BA ;SET NBR OF BYTES REMAINING
0590' AF XOR A ;CLEAR NBR OF BYTES REMAINING IN BUF
05Bl' ED B3 OTIR ;WRITE FINAL BLOCK

05B3' 32 02A4' IWR$DN: LD (WRSIZ)tA ;SAVE NBR OF BYTES LEFT IN BUF
05B6' 22 02A5' LD (BUFPTR)tHL ;SAVE PHTR TO NEXT BYTE IN BUF
05B9' El POP HL
05BA' Cl POP BC
05BB' Fl POP AF
05BC' C9 RET

PACE

Figure 18. MBM Software (page 30 of 32).

225

MACRO-80 3.36 17-Mar-80 PAGE 1-33

*e *

;* THIS ROUTINE CLEARS MBM INTERRUPTS AND CLEARS THE BMC
;* STATUS REG.

; INPUT: N/A

;* OUTPUTz BMC STATUS REG 00 *
DRO AND INT INTERRUPT LINES ARE CLEARED

0SBD' IRESET:
05BD' F5 PUSH AF

05BE' C5 PUSH BC

05OF' D5 PUSH DE

05CO' 3E 20 LD ABMORES ;*** RESET INTERRUPTS

05C2' D3 29 OUT (BM$CMD)A ;*** CLEAR STATUS REG ,r*

05C4' OE 09 LD CIPRTLH
05C6' 11 0121' LD DEtRSTMSG ;* STATUS/INTERRUPT ARE RESET *

05C9' CDO 0005 CALL CDOS

05CC' DB 29 IRS- IN At(BM$STAT) ;GET BMC STATUS

05CE' A7 AND A ;IS STATUS CLEAR (IMPLIES INT ALSO CLR)

05CF' 20 FB JR NZIRS ;NO, WAIT

05D1' Dt POP DE

0512' Cl POP BC

05D3' Fl POP AF

05D4' C9 RET

END

Fiqure 18. MBM Software (page 31 of 32).

226

MACRO-80 3.36 17-Mar-80 PACE S

Macros:

Symbols:
ADRO 000E ADRi OOOF BLRO 0008 BLR1 QOOC
BMSADT 0019 BM$CMD 0029 BMSDAT 0028 BM$FRE 001D
BRUINT 0011 BMSPRG 001E BIIRBL 0018 BM$RBR 0015
8MSRCD 001C 8M$RD 0012 BMSRES; 0020 BM$RFS 0018
BMSRSK 0014 BM$SRE 001F BMSSTA 0029 BMSWBL 0017
BMSWBR 0016 8IM$IdMB 0010 BM$IJR 0013 BMSUSX 001A
BRLEN 0005 BSYBPS 0007 BUFPTR 02A5' CDOS 0005
CORBPS 0003 CORERR 00B1' CR 0001)D MBPS 0002
ENR 0001) ERRMSG 0049' FFRBPS 0000 FFRMSC 0289'
PIFO 0000 HALFUL 0016 IC$RT 0488' ICDBPS 0006

IT 0002 IERPS 0001 IH$C3 052C' IH$C4 0538'
IH$C5 0544' INSDN 056C' IHSOC 0546' IHSRT 056F'
IH$RW 0558' INSRT 02E1' INBIT 0001 INKS3 0000
INC$AD O3DA' INIMSC 014C' INT$HN 0500' INT$IN 048D'
INYSRO 0575' INTSRE 0407' IHTSRS 0038 INT$WR 0404'
INTSWT 0599' INTFLG 02A7' INTSAY 02A8' IPBIT 0080
IPBPS 0007 IR$C8 04C5' IR$RT 0402' IRD$C2 058B'
IRD$DH 058F' IRESET 0580' IRS 05CC' IWSC8 04F3'
IW$lWTI 04DE' IWRSC2 O5AF' IUR$DN 05B3' JPSOPC 0003
LI' 000A MBMSAB 03751' MBM$BM 02ABI' MBMSFF 03A91'
MDN$IC 04581' MBM$IN 02C61' MBMSIS 04251' MBMSPS 02801'
MBM$PU 03821' MBM$RC 03A31' flBM$RE 02E31' BMWR 036F1'
MDNSRS 03471' M8MSRX O2FFI' MBM$RZ 03901' MBM$SR 037CI'
M8M$ST 02811' MENSUB 02841' MBM$WR 030CI' MBNSUS 03831'
MBMSUX 03611' MBM$WZ 0369!' NONSUP 0389' ONE 0001
OPCBPS 0006 OPCMSG 0073' OPFBPS 0005 PRTEND 0024
PR'rLN 0009 RCDBPS 0005 RD$RT O2FA' RDERR 0022'
RDSIZ 02A3' READ O3EC' READ$L 03FA' READ$R 0410'
REIMSG 0258' RSTMSG 0121' SET$BM 03C6' SUPMSG 0000'
TIMBPS 0004 TIMERR 0002' UNCBPS 0002 UNCERR 0090'
WAITST 0415' WATELP 0410' WATEST 041C' WBLBPS 0004
WHONOZ 0071' WR$RT 0340' WR$WTI 0325' WRSWT2 0327'
WRSIZ 02A4' XFRBPS 0003 ZERO 0000

No Fatal error(s)

Figure 18. MBM Software (page 32 of 32).

227

IV. User's Manual

The MBM Interactive Development System (MIDS) described

in the following manual is an S-100 based peripheral device

used for troubleshooting and verifying operation of Intel

7110 MBM's and their related support IC's. Once a user is

familiar with MBM operating characteristics (see Ref 3), the

use of MIDS is straightforward. It requires only that the

user be able to log onto the host system and initiate

execution of the program called MIDS. Software prompts the

user for subsequent inputs. In addition, a menu of available

operations can be displayed at anytime to assist in input

selection.

System Start-up

The following sequence describes how to get started with

MIDS.

1. Turn off power.

2. Insure BPK-72 to S-100 interface card is
seated in the motherboard.

3. Turn on power.

4. Boot the Operating System.

5. Type "MIDS" on console (ie, start system
execution).

6. Console will prompt for additional information.

228

&I

Command Summary

Once MIDS execution begins, the console displays a help

menu and prompts the user to enter an execution command. The

help menu lists all valid commands and has the following

appearance:

*** MBM COMMAND MENU ****

0 - WRITE B/L REGISTER MASKED I - INITIALIZE
2 - READ BUBBLE 3 - WRITE BUBBLE
4 - READ SEEK 5 - READ BOOTLOOP REGISTER
6 - WRITE BOOTLOOP REGISTER 7 - WRITE BOOTLOOP
8 - READ FSA STATUS 9 - ABORT
A - WRITE SEEK B - READ BOOTLOOP
C - READ CORRECTED DATA D - RESET FIFO
E - MBM PURGE F - SOFTWARE RESET

H - DISPLAY COMMAND MENU I - INITIALIZE MBM BUFFER
J - SET INTERRUPT I/0 K - SET POLLED I/0 PROCESSING
P - PRINT MBM BUFFER Q - READ BMC ADDR REG (PRINT)
R - READ FIFO (AND PRINT) S - PRINT BMC STATUS
U - SET BMC REG VALUES V - PRINT BMC REG VALUES
W - WRITE FIFO X - EXIT TO CDOS

To execute one of the listed commands, the user must enter

the single letter appearing to the left of the desired

operation title. Commands requiring additional information

will prompt the user for it as needed.

Of the 28 operations available on the command menu, the

first 16 correspond directly to physical Intel 7110 commands.

Therefore, an explanation to commands 0 through F is not

reiterated here, but can be found in Appendix E under the

BPK-72 Bubble Me Prototype Kit User's Manual section (Ref

2: 3-10 - 3-13). The remaining 12 commands are used for

development support and are explained in the following

paragraphs.

229

H - Display Command Menu. This command lists the menu

illustrated above.

I - Initialize MBM Buffer. MIDS software maintains an

204 byte buffer. This is sufficient to hold up to three MBM

pages (3 * 68 = 204). The Initialize MBM Buffer command

provides a way to set the software buffer to a known value

before an output operation.

Following initiation of the "I" command the console will

prompt the user for an initial value which is put into the

first byte of the buffer. Then an increment value, entered

after a second prompt, is used to ripple values throughout

the buffer. For example, an initial value of OH and an

increment of 01H provides 204 bytes with the following

hexidecimal pattern: 01, 02, 03, ... CA, CB, CC.

J - Set Interrupt 1/0 Processing. This command enables

interrupt I/0 processing by setting the Enable Register

within the BMC to interrupt when an operation completes.

Other interrupt conditions can be enabled via the Set BMC

Register Values (U) command.

Interrupt I/0 is somewhat limited. The interrupt

handling routine is set to recognize operation complete and

error interrupts. In addition, FIFO half full interrupts are

processed only for MBM Read (2) and Write (3) commands. All

other interrupts are essentially ignored.

K - Set Polled 110 Processin&. Polled I/O is the normal

operating configuration for MIDS. The Set Polled I/0

Processing (K) command is provided to return MIDS software to

230

its normal configuration following interrupt I/O processing.

In addition to resetting MIDS software, all interrupt enable

bits within the BMC are cleared.

P - Print MBM Buffer on Console. This command formats

and dumps the hexidecimal byte values found in the software

I/O buffer. Two slightly different formats are printed

depending on whether error correction is enabled. With error

correction only 64 bytes are diplayed per MBM page. Without

error correction, all 68 bytes per page are displayed.

Q - Read BMC Address Register Lan d Print). This

command reads the BMC Address Register and prints it on the

console.

R - Read FIFO (and Print). The BMC contains a 40 byte

FIFO as a data buffer between the processor and the bubble

device. The "R" command dumps the FIFO to the console.

During the FIFO read, the first byte of data is lost.

This loss of data results from software implementation

restrictions. To allow for MIDS flexibility, BMC registers

must be initialized before each FIFO read. This

initialization operation destroys the first byte in the FIFO

(Ref 3:3-8).

S - Print BMC Status. This command reads the BMC Status

Register and prints it on the console.

U - Set BMC Rexister Values. Registers within the BMC

define operation of the MBM peripheral. The "U" command

provides a way to change these register values so that the

231

BMC can be configured for specific development tasks. (Ref

2:3-2 - 3-7)

Individual register values are set based on responses to

console prompts. The first prompt:

NUMBER OF PAGES PER I/0 BLOCK =

requests information for setting the Block Length Register.

Answers to the next set of prompts:

ENABLE NORMAL INTERRUPTS? (Y/N/Return)
INTERRUPT ON ERRORS? (Y/N/Return)

MAXIMUM TRANSFER RATE? (Y/N/Return)
READ CORRECTED DATA? (Y/N/Return)
INTERNALLY CORRECT DATA? (Y/N/Return)

are used to generate an Enable Register value. Note that

software will not allow interrupts to be enabled unless the

system is in interrupt I/0 mode (initiated by "J" command).

In addition, software allows only one form of error

correction to be enabled at any one time. The final prompts:

WHICH BUBBLE?
RECORD NUMBER (3 HEX DIGITS)?

request data for initializing the Address Register.

Some MBM I/0 operations update the Address Register to

point to the next available MBM page. The "U" command is

capable of leaving this and other register values unchanged.

Any of the register fields that can be changed by the "U"

command can also be left unchanged with a "Return" response.

V - Print BMC Reaister Values. BMC registers are reset

before each MBM operation from values saved in memory. While

the "U" command changes these values, the "V" command

displays them.

232

W - Write FIFO. This command dumps the first 40 bytes

of the 204 byte software I/0 buffer to the BMC FIFO.

X - Exit to CDOS. This command returns execution

control to the operating system.

Command Features

Not all commands involve physical access to the MBM

peripheral. Following initiation of commands that do, the

peripheral status is automatically printed. The status that

is displayed may at times present false images of actual

peripheral status. This happens because some instructions do

not complete before the status is displayed. This is not a

fault, but rather a debugging fr.ature of MIDS. This allows

the user to observe the results of an operation and to

continue processing without having to wait for a valid status

which may never come.

Status' that indicate an operation has completed have

their most significant bit off, and only one of their next

two significant bits on (Ref 2:3-3). On occassions when an

unexpected status is displayed, execution of the Print

Status (S) command usually provides enough delay so that the

expected status is shown. If this request results in another

apparently bad status, chances are that an MBM fault exists.

Most MBM commands await completion of previous

operations before they start executing. Attempted execution

of such commands when the most significant bit of the BMC

status (the busy bit) is set, results in a possible infinite

loop waiting for the MBM to become available. So, before

233

entering a command, the user must insure that the MBM status

is not busy. One way to accomplish this is via the Abort (9)

command.

MBM initialization

The following sequence of commands insures that the MBM

peripheral is set up to properly process user requests.

First, an MBM Abort (9) command is sent to terminate any

currently executing command and to clear BMC status. The

status returned should be either 40H or 41H. After obtaining

either one of these status' the MBM Initialization (1)

command should be executed. Again the final status should be

either 40H or 41H. Any other status, for either command,

indicates problems that must be solved before other commands

in the range of 0 through F can be executed.

Interrupt Processin&

An interrupt processing capability is available with

MIDS only to prove that MBM interrupt facilities work as

claimed by the manufacturer. The primary advantage of

using interrupts, concurrent processing of tasks, is not

supported by MIDS. Following initiation of an MBM command, a

wait loop is entered until all interrupts related to the

requested operation are processed. Consequently, each

command executes to completion before another is started.

234

Errors

User errors fall into two categories. One type is

detected by MIDS foftware, while the other is found by the

operating system. zrrors caught by MIDS software cause an

error message to be printed, execution of the current command

to cease, and return t~o the MIDS command entry level. At the

command entry level the user can retry the erroneous command,

or tr 1 a different command. Errors caught by MIDS are:

INVALID COMMAND - requested operation does not match
those available on the command menu;

INVALID INPUT - additional data requested during a
command is invalid; some invalid inputs do not
cause an error message, but instead, cause the
original question to be asked again.

Errors found by the operating system do not have the

same gracious effect as those errors found by MIDS.

Operating system errors cause an error message to print and

control to pass back to the operating system level. The user

may then reexecute MIDS or, in extreme cases, reboot CDOS.

The most common way to get an operating system error is to

request an MBM opertion that is not supported by interrupt

processing, while MIDS is in its interrupt mode. See command

"J" for a discussion of valid interrupt operations.

235

Appendix D

IFPDAS IR Debugging Tool

Contents

I. Introduction......................237

I.User Instructions...................238

Monitoring......................238
Single Step......................238
IR Reset.......................239
Memiory/Peripheral Read................239
RAM/Peripheral Write.................240

III. Hardware.......................241

Schematic Diagrams..................241
IR Bus Buffers..................241
Bus Monitor...................244
IR Reset.....................247
Single Step...................248
Input/output...................251

IC Map........................253

236

IFPDAS IR Debugging Tool

I. Introduction

The IFPDAS IR described in this thesis is a prototype.

Because of this, it requires tools for software development.

One such tool is the IFPDAS Inflight Recorder Debugging Tool

(RDT). The RDT is a hardware front panel for the IR

processor. It does not contain a monitor program or any

other software, but does give programmers a way to trace

software execution.

The RDT is designed so as not to affect IR operation.

The only impact of RDT design on the IR is bus loading. As

explained later, the RDT presents single P2CMOS loads to many

of the pins on the IR busses. The addition of these single

loads is transparent to IR operation.

No IR hardware changes are required to accommodate the

RDT. This fact. coupled with bus loading transparency, means

that the IR will operate identically with or without the RDT.

Thus, hardware changes do not have to be factored into

operating predictions whenever the IR is detached from the

RDT.

237

II. User Instructions

The RDT is a hardware front panel for the IR processor.

Capabilities that the RDT provides are:

1. monitoring address and data busses,
2. single stepping through programs,
3. resetting the IR processor,
4. reading a byte from memory or a peripheral, and
5. writing a byte to RAM or a peripheral.

Another capability that users do not explicitly see is

the one for unimpeded operation of the IR. The IR can run

independent of the RDT in two ways. One is with the

interface cable between the IR and RDT detached. Another way

is to put the RDT in "RUN" (SW106) mode with all other

debugging functions disabled. A benefit of this method is

that the hexidecimal displays will monitor program execution

and provide feedback on its operation.

Monitoring

Monitoring activity takes place during program

execution. Programs execute in one of two modes, full speed

or single step. During both modes, hexidecimal numbers

displayed on the front panel reflect the address of the

currently executing instruction.

Single Step

The combined use of switched SW106 and SWl07 allow users

to execute an IR program with breaks between instructions.

To enable single step operation, SW106 is switched to "S/S".

238

As soon as this happens and the current instruction completes

execution, the IR processsor halts to await a step command.

The momentary switch, SWI07, transmits this command when

depressed. Each time SW107 is toggled one IR instruction is

executed. When SWI06 is in its "RUN" position, SW107 is

disabled.

IR Reset

Reset action takes place regardless of other RDT switch

settings. Whenever SW112 is depressed, the IR processor is

forced to restart program execution at hexidecimal location

0000H. This is the same address where program execution

begins upon power up. Because power up automatically causes

an IR Reset, performing a reset through the RDT is not

necessary to start program execution.

Memory/Peripheral Read

When used together, SWl08, SWl09, SWI1O, and SWill

provide the IR with a memory and peripheral input capability.

To perform a read, SWI0 is set to "RD". Switches SW108 and

SW109 determine the input source and enables SWill, the

read/write strobe. When the strobe is toggled, the byte at

the address shown on the hexidecimal display is latched into

the data display. The action of the read strobe is disabled

whenever both SW108 and SW109 are in their "NOP" positions.

After choosing to perform an I/0 operation (SWI08 - MEM

or SW109 - PER) and before toggling the read strobe, the

address display can be changed to a user defined value.

239

Individual digits are incremented by depressing the switch

directly below the displays. Note that peripheral addresses

occupy only one byte, and must be entered in either the two

high-order or the two low-order hexidecimal digits.

RAM/Peripheral Write

The RDT write operation dumps the information shown in

the data display to the memory or peripheral address shown in

the address display. Write operations work similar to the

read operation described above. With SWIIO set to "WR",

SWI08 and SW109 determine the type of output to be performed,

while SW11l determines when the operation will occur. One

obvious difference between the read and write operations is

that the data display must be initialized before the write

strobe is toggled. Anoth-r difference is that a memory write

operation is restricted to the RAM address space. Memory

read operations can also access EEPROM addresses.

240

III. Hardware

Schematic Diagrams

Instead of having one large schematic diagram, RDT

hardware is described using smaller, functionally grouped

diagrams. When combined as one, the individual diagrams

completely define the RDT. The rule that binds the diagrams

is signal naming conventions. From one diagram to the next,

common signal paths have identical names.

Most control signals found in the following schematics

are prefixed with either an "0" or an "I". An "0" prefix

indicates that the signal originates from within the RDT

hardware and is "Output" to the IR bus. Signals "Input" from

the IR bus are preceeded with an "I". Signals with no prefix

are generated and used internal to the RDT. Control signals

may also have a postfix of "*" to indicate that they are an

active low -ignal.

Another stai-dard feature of RDT hardware is that all

switches are debounced. The debouncing circuit is

implemented in every case by a data flip-flop (FF) with

preset and clear inputs. Its theory of operation is

presented in the discussion of the IR Reset function.

IR Bus Buffers. The interface between the IR bus and

the RDT is fully buffered. Figure 19 shows that all signals

- with the exception of OWAIT*, OBREQ*, OPS*, and ORESET-IN*

- are connected via P2CMOS buffers. So, RDT inputs present

241

' ii i i i i III iI I I

rl)$ OU T r.TRL

NO r, 7

O009 MlLI 0082X '

40(2'/ I L4

Figure 19. RDT 1/0 Buffers.

only single P2CMOS loads to the IR bus; and outputs have the

same drive capacity as components of the IR. The three

remaining signals are output to the IR control bus through

open-collector gates.

IR signals required by the RDT fall into three

categories: bidirectional, input and output. Placement

within a category depends upon when and how individual

signals are enabled through a buffer. Data and address

busses, which provide both input and output for the RDT,

are bidirectional. Control bus signals SO, SI, RD*, and

BACK* are sources of input. Output signals are the XWAIT*,

BREQ*, PS*, RESET-IN*, RD*, WR*, and IO/M* control lines.

242

While RD* appears both as an input and an output signal, it

is not considered bidirectional because it is buffered by B26

as an input, and by B27 as an output.

Bidirectional lines are buffered by B23, B24, and B25.

These 82PC08, Bidirectional Transceivers, operate

continuously with their direction of transmission determined

by the RDT function being performed. When the RDT is in a

monitor or single step mode, all three transceivers act as

input buffers. In the memory/peripheral write mode, they are

output buffers. However, when reading memory or a

peripheral, B25 is an input buffer and B23 and B24 are output

buffers. The two OR gates in the upper part of Figure 19

provide direction control logic for these three transceivers.

IR lines categorized as input signals are buffered by

B23. The input buffer is hardwired to transfer data from the

IR to the RDT continuously. The two OR gates fed directly

from B26 are used as a second level of input to increase the

fan-out of the P2CMOS IC's for driving the LSTTL circuitry of

the RDT.

IC's B27 and B28 are output buffers. To preclude bus

contention problems, ORD*, OWR*, and OIO/M* use the tri-state

feature of the 82PC08. During operations where the RDT does

not require control of IR resources, the output buffers are

disabled. Neither monitor nor single step operations need

control over the IR to accomplish their tasks. However, I/O

operations must use the IR buses. Once an I/O operation

gains control of IR resources, BREQ* + BACK* - 0, the 82PC08

243 'I

is enabled and signals generated by the RDT are sent to the

IR.

The four output signals which do not pass through

Bidirectional Transceivers - OWAIT*, OBREQ*, OPS*, and

ORESET-.N* - are interfaced to the IR via 7417 open-collector

buffers. The reason open-collector buffers are required is

that corresponding signals on the IR control bus are held

normally high through pull-up resistors. To drive these

lines low, open-collector gates are used.

Bus Monitor. Hexidecimal displays are provided for

monitoring the IR data and address busses. Toggle switches

and counters add the capability for initializing these busses

whenever the RDT is in an I/0 operation mode.

Before discussing construction of the monitors, an

understanding of the differing functional requirements betwen

the data and address monitors is useful, While programs

execute, the RDT is in a monitoring mode, That is, the

addrtess monitor reflects the addresss of the currently

executing instruction and the data monitor is blank. In its

I/0 mode the RDT gains control of the IR busses from the

NSC800. Regardless of whether an input or an output

operation is being performed, the value in the address

monitor is gated to the IR address bus. Similarly, the data

monitor is gated to the IR data bus, but only during an

output operation. During input the data monitor reflects the

value found on the data bus.

244

L

DA IN3 C3Y
.3 7 -3 -113 4

I
4 M lnx

I /V9 7 CQL #/I

D Sw

EL CAITI 10A
5 /0)(

No
P 17

1 OUTJ 82Y .3 0/" L
4/1

/#/ 7 34 4/
OUTO 0

ZN-

5 +
L BACK I

WR

Figure 20. Data Bus Monitor.

3 DIX
POOR LNJ 7 .3

4 1
0

CLIR
UA

0 L D CA/71.5W/OX
I-S, Sx

Zj 7- CLK Mee

A ouiaszx a galiZ 13
7

zS1 oil 4,r

.. z9v
IRL)

Figure 21. Address Bus Monitor.

245

Figures 20 and 21 show circuits for monitoring and

initializing four bits of a bus. In both diagrams INO

represents the least significant bit of the four bit group.

B2X, C3X, D4X, SWIOX, and the OR gate connected to CLK1 of

C3X are reproduced twice for the data monitor and four times

for the address monitor. This covers all 24 bits of the data

and address busses. Other logic gates shown in the figures

determine when particular components are enabled.

Figure 20 shows the circuit for monitoring/initializing

the data bus. During program execution, the logical OR of

OBREQ* and IBACK* is always one. Consequently three

significant action. occur. One is that the hexidecimal

display, D4X, is blanked. Another is that the toggling

action of SWIOX is blocked from C3X. The third is that the

output buffer, B2X, is disabled. When the RDT is in I/0

mode, OBREQ* and IBACK* are zero. The result is that D4X is

no longer blanked and SW10X increments the C3X counter.

Combined with a write request, WR* = 0, OBREQ* and IBACK*

also enables C3X to be incremented and allows its output to

pass to the data bus. During read operations WR* = I and

again B2X is disabled. However, C3X is enabled in its

latched mode, passing information from the data bus to D4X.

Figure 21 shows the circuit for monitoring/initializing

the address bus. When the RDT is in its program execution

mode, C3X acts as a latched buffer, passing appropriate

information to and blocking undesireable bus activity from

D4X. During execution of an instruction, the address and

246

data busses change several times. Consequently, control

signals determine the proper time for latching information

into C3X. The desired information is available when ISO and

IS1 are both high, indicating an operation code fetch cycle,

and RD* is low (Ref 24:4-13). Under these conditions CT/LD*

equals zero and bus information is latched into the counter.

When the RDT is in its I/0 mode OBREQ*, IBACK*, ISO, and

IS1 are low, and the CT/LD* pin of C3X is high. This

disables additional information from latching into the

counter from IR busses, and allows the IR address bus to be

initialized. Initialization involves incrementing C3X to a

desired value using SWl0X. The OR gate connected between

SWIOX and C3X stops count pulses from reaching C3X unless the

RDT has contol. So, even though C3X is usually count enabled

(CT/LD*=I), count clock pulses (CLKI*) are blocked from C3X

unless the RDT is in an I/0 mode.

IR Reset. The NSC800 and its peripheral controllers are

reset whenever the RESET-IN* pin of the CPU is grounded.

Figure 22 is a schematic of the circuit used to ground

RESET-IN*. The diagram consists entirely of a switch

debouncer.

A data FF with preset and clear inputs works well for

switch debouncing. With the CLK input tied low, data inputs

to the FF are disabled and output is dependent on only the

preset and clear inputs. At any time only one of either the

preset or clear inputs is low. The output of the FF reflects

the switch position. When the switch is changed, voltage

247

"-5-

,-~l ,-r-
17

Figure 22. IR Reset Function.

spikes appear as the switch disconnects from one terminal and

as it connects to the other. These two causes of spikes are

mutually exclusive. So, the FF reflects switch positioning

without intermittent voltage spikes.

Sinale Step. The power save feature of the NSC800

allows inplementation of a single step function. During the

last clock cycle of each instruction, the PS* pin of the

NSC800 is sampled; and when found in a low state, program

execution is suspended. The NSC800 Microprocessor Family

Handbook suggests a way of using this feature to control a

single ste; function. (Ref 24:4-23)

In general, single stepping works by holding PS* low

until time for a step. Then PS* is set high, allowing

program execution to continue. Before the current

248

instruction completes, the RD* strobe from the operation code

fetch cycle clears PS* and again execution is suspended. The

result is that only one instruction is executed every time

PS* is toggled high.

Figure 23 shows the circuit used for implementing single

stepping within the RDT. The circuit effectively works as

outlined above. However, RDT complexity requires that

enhancements be made to tailor single step functioning.

The first enhancement provides a switch to allow a

choice between normal program execution and single step

execution. In its "RUN" posiLion, the switch provides a high

input to two OR gates. This effectively blocks single step

actions by maintaining OPS* and OWAIT* high. In its "S/S"

position, a low signal is input to the blocking gates,

allowing step toggling to control OPS* and OWAIT*.

The requirement for a wait state to be generated

externally from the IR results from the interaction of the

ALE pulse generated by the NSC800 and the wait state

generation circuitry. ALE is held high whenever the NSC80G

is in a power save mode, PS* - 0 (Ref 24:4-23). But wai.:

states are valid for only one machine cycle after ALE goes

high. The facts that a single step operation extends across

many machine cycles while PS* - 0, anc the first CPU

operation performed after PS* goes high is an operation code

fetch from EEPROM, require that an external wait state be

generated.

249

IK

SWiO& 4 a _7 D
~~_ a,' .-- Of -.__w R,.I4o S&L I 3

C.LW *(A71,2

[4
grure 23. SI S Function.

th B.bs tcue. Snc the" NC80 onl saplsBRQ

during the glas cloc cyc gle ofaninstuction.(e 441)

at least one instruction must execute before bus control is

relinquished. The lover right-hand FF of Figure 23 is the

component which insures at least one is executed. Upon

activation of BREQ, a one is latched into this FF. The one

250

I 7 IA~ I II III I

then passes through an OR gate, causing the upper right-hand

FF to latch a one onto OPS* and a zero onto OWAIT*. Both

latches are reset by the RD* strobe which originates during

an operation code fetch cycle. While this action insures one

instruction is executed, all is in vain if SW6 is set to

"RUN". Either way, an instruction is executed, allowing

OBREQ* to be recognized.

Input/Output. I/O operations can be performed on both

memory and peripheral devices. Setting either SWI08 or SW109

selects a type of I/0 device and enables RDT I/0. SWlIO and

SWill determine the type of I/0 operation and when it will be

performed. Figure 24 shows the I/0 portion of RDT circuitry.

For discussion, Figure 24 is divided at output pin 6 of U81.

This splits the diagram into a bus requesting circuit and an

I/0 strobe generating circuit.

Before an I/O operation can proceed, the RDT must gain

control of the IR busses. The first step in getting control

is to request it by setting OBREQ* low. When SW108 = "MEM"

or SWI09 - "PER", one of the switch debouncers will cause the

pin 10 of U82 to change from its normally high output state.

A low output from U82 is used as the bus request signal -

OBREQ*. The IR processor recognizes that OBREQ* - 0 before

fetching another instruction, and responds by setting IBACK*

low. This response indicates that the RDT has control of the

IR busses and causes output pin 6 of U81 to go low. This low

output enables the I/O strobe generating portion of the the

diagram.

251

" K 18C -I K Wl,

Figure 24. Memory/Peripheral I/0 Circuit.

SWI10 determines whether a read or a write will be

performed by allowing toggle pulses to reach an appropriate

74221, one-shot. Once enabled by the OBREQ*/IBACK* sequence,

pulses from the SWill momentary switch are applied through

these enable gates to the falling edge triggers of one-shots.

Outputs from the one-shots are pulses of known width that are

used for the ORD* and 0WR* strobes. The width of each strobe

is determined by the I/ circuit with the longest pulse

requirements. EEPROM's, with a typical access time of 500

nanoseconds (aef 12), require the longest read strobe of any

252

/a I/C

memory or peripheral circuit. Allowing for possible atypical

operation, the ORD* generating one-shot is tuned to 600

nanoseconds. The OWR* strobe width is set at 200

nanoseconds. This time is governed by the NSC810 I/O port

(Ref 24:A-27), the slowest device that can be written to by

the RDT.

IC Map

In general, IC's are grouped by the RDT function they

support. Figure 25 illustrates the relative position of IC

groups as they appear on the RDT wirewrap card. In addition,

naming conventions used in previous schematic diagrams help

identify IC functions. Letter prefixes and their meaning

are:

B - Buffer,
BC = Bus Connector,
C - Counter,
D - Display,

R - Resistor Pack,
S - Switch Debouncers,
SW - Switch, and
U - Individual Operations.

The "U" group is further broken down so that

U6 - Display/Initialize Operation,
U7 - Single Step, and
U8 - I/0 Operation.

Table XVI is a more definitive list of the IC functions used

in the RDT.

IC sockets on the RDT wirewrap card do not contain the

prefixes described above. Instead, only the number following

the letter prefix is found on the sockets. Numbering

253

i.

consistency provides the correlation between the schematic

diagrams and the wirewrap sockets.

I/O ADDRESS DISPLAY B
_ DEBOUNCERS U

F
F

SINGLE STEP E
DATA R
DISPLAY RESISTOR S

MONITOR PACKS

Figure 25. RDT IC Functional Groupings.

254

TABLE XVI

RDT IC Listing

Device Functional Schematic
Type Designation Reference

5082 Hexidecimal LED Display D40-D45

7400 Quad 2-input NAND Gates U61,U81

7402 Quad 2-input NOR Gates U60,U82

7417 Hex Open-Collector Buffer B28

7432 Quad 2-input OR Gates B29,U62,

U63,U71

7474 Dual D-type Flip-Flops Sl-S13,U70

74197 Presettable Binary Counter C30-C35

74221 Dual Monostable Multivibrator U80

74244 0cta1 Tri-State Buffers B20-B22

82PC08 Bidirectional Transceiver B23-B27

IK x 8 Resistor Pack R90,R92,
R94,R96-R99

255

Appendix E

Manufacturers' Data Sheets

This appendix contains manufacturers' data sheets for

the IC components used in the IR prototype. However, they

are not published with the thesis. Instead, they are on file

at AFIT/EN, Wright-Patterson AFB, OH, 45423.

256

VITA

Robert Eugene Meisner was born on 10 September 1952 at

the Carlisle Barracks, Pennsylvania. Being a member of a

military family he attended many schools before graduating

from high school in Olla, Louisiana. Continuing his

education in Louisiana, he earned a Bachelor of Science

degree in Computer Science in May 1974. Upon graduation, he

recieved a commision in the US Army through the ROTC program.

While in the Army he held positions as an AUTODIN terminals

programmer, a company executive officer, and a battalion

supply staff officer. In August 1977, he recieved an

interservice transfer to the USAF and was assigned to Hq SAC.

He spent his entire tour as a computer systems analyst,

supporting SlOP production before being accepted to AFIT. He

entered the AFIT, School of Engineering in June 1980.

Permanent Address: 29 Halsey Drive

Marietta, GA 30062

257

Unclassif ied
SECURITY CLASSIFICATION OF THIS PAGE (When Data Rntered)

REPORT DOCUMENTrATION PAGE READ INSTRUCTIONS
REPORT__ DOCUMENTATIONPAGE_ BEFORE COMPLETING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

APIT/GCS/EE/82M-5 __

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

AN INFLIGHT RECORDER PROTOTYPE FCA THE MS THESIS
INFLIGHT PKYSIOLOGICAL DATA ACQUISITION 6. PERFORMING ORG. REPORT NUMBER

SYSTEM III
7. AUTHOR(*) 8. CONTRACT OR GRANT NUMBER(s)

Robert E. Meisner, Captain. USAF

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Air Force Institute of Technology (AIT/EN)
Wright-Patterson Air Force Base, Ohio 45433
I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

School of Aerospace Medicine February 1982
Crew Systems Division (SAM/VNB) 13. NUMBER OF PAGES

Brooks AFE. Texas 78235 271
14. MONITORING AGENCY NAME & ADORESS(If different from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified

IS. OECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release;distribution unlimited

t7. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

IS. SUPPLEMNTA YNOTES AR}R1V FOR PUBLIC RELEASE. iAW AFR 19C.i,

. JO A;R FORC7 I',.TiE 0.' iXC
.14 E; WOLAVER " C

'Dean for esearch and
IS. KEY WORDS (ConIvf"e$8e" Isei1dRw 4*t d identify by block number)
Inflight Physiological Data Acquistion System (IFPDAS)

Complementary Metal-Oxide Semiconductor
Electrically Erasable Programmable Read-Only Memory

Magnetic Bubble Memory Remote Data Acquisition Microprocessor
Microcomputer Analog to Digital Conversion

20. ABSTRACT (Continue on reveres aide if necessary and identify by block number)

See reverse

DD ,AN ,, 1473 EDITION OF I NOV 6,, OBSOLETE
Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Oaclassified
SECURITY CLASSIFICATION OF THIS PAGE(Whea Data Entered)

Block 20.

A prototype for the Inflight Recorder component of the Inflight
Physiological Data Acquisition System was built. The Inflight Recorder
is a remote data acquisition computer for sampling physiological data.
Characteristics of the recorder's design were solid-state,
microprocessor controlled, expandability, 16 sensor inputs, and 122
samples per second. Demonstration of battery operation for four hours
and unobstructive size characteristics awaits further testing.

Following a hardware requirements analysis, the prototype was
built using Complementary Metal Oxide Semiconductor (CMOS) integrated
circuits. Components featured in the design were a CMOS
microprocessor; Electrically Erasable Programmable Read Only Memories
(EEPROM); a monolithic, 16 channel, analog to digital converter; and
Magnetic Bubble Memories (MBM).

In addition to building the IR prototype, several development
tools were constructed. One was a EEPROM Programmer. Another was an
MBM Interactive Development System. A third was a hardware front panel
for debugging IR software. User's manuals for these tools appear in
appendices to the thesis.

Unclassif ied
SECURITY CLASSIFICATION OF THIS PAGE(Whon Dae Entered)

AT -E

